melkwegstelsels

Melkwegstelsels zijn oases van massa en licht in een verder koud en leeg heelal.

Het heelal vanuit menselijk perspectief

In onze leefomgeving op planeet Aarde zijn we gewend aan afstanden van meters of kilometers, materie met dichtheden variërend tussen die van lucht en metalen, en temperaturen die niet verder dan enkele tientallen graden afwijken van het vriespunt van water. Als mensen denken we in tijdschalen tot ongeveer een eeuw, maar meestal veel korter. Het contrast met het heelal als geheel is enorm. Vanuit kosmisch perspectief is de Aarde in vele opzichten een bijzondere plaats, sterk afwijkend van de norm.

Vanaf de Aarde zien we maximaal enkele duizenden sterren met het blote oog, plus een handvol planeten, en natuurlijk de Zon en de Maan. Als we het zonnestelsel verlaten blijven alleen de sterren over. Deze sterren zijn onze naaste buren in ons sterrenstelsel, de Melkweg. Echter, vanaf vrijwel elke plaats in het heelal is er helemaal niks te zien: niet één ster, laat staan meer heldere hemellichamen. Zelfs andere sterrenstelsels, waarvan je er (als je geluk hebt) enkele kunt zien op Aarde als zwakke nevels, zijn bijna overal afwezig.

Natuurlijk is het geen toeval dat wij in een van de zeldzame locaties (ongeveer een miljoenste van het heelal) leven waar wél sterren te zien zijn. Leven zoals dat op Aarde kan niet ontstaan in de praktisch lege ruimte waaruit bijna het hele heelal bestaat. Na de Oerknal was materie gelijkmatig verdeeld, maar sindsdien heeft het zich onder invloed van zwaartekracht sterk samengeklonterd tot hoge lokale dichtheden in de vorm van groepen sterrenstelsels, en wij leven in een van deze relatief kleine gebiedjes. Daartussen bevinden zich gigantische gebieden van vrijwel lege ruimte.

Een representatieve foto van het heelal.
Een representatieve foto van het heelal.

Het heelal is niet alleen volledig donker op veruit de meeste plaatsen, maar ook ijskoud. In de afwezigheid van sterren, en dus warmtebronnen, ligt de temperatuur slechts 3 graden boven het absolute nulpunt (dus zo’n -270 graden Celsius). Dit is namelijk de temperatuur van de `achtergrondstraling’, straling die kort na de Oerknal ontstond en overal aanwezig is.

Het heelal is dus koud, donker, leeg… maar vooral groot.

Ga maar na: de gemiddelde dichtheid van het heelal komt overeen met enkele waterstofatomen per kubieke meter. Dit is niet wegens een gebrek aan massa; het zichtbare heelal[1] herbergt naar schatting zo’n 100 miljard sterrenstelsels, die op hun beurt rond de 100 miljard sterren bevatten. Een gemiddelde ster weegt 100.000 keer zoveel als de Aarde. Daarnaast is er nog een grotere hoeveelheid massa in de vorm van geheimzinnige donkere materie en donkere energie. Niettemin is de gemiddelde dichtheid van het heelal extreem laag: ruimte is nog veel overvloediger dan massa.

Als we de leeftijd van het heelal vergelijken met haar afmeting, ontdekken we dat het heelal eerder groot dan oud is. Het volume van het zichtbare heelal is gelijk aan 1082 (een 1 met 82 nullen) keer het volume van een mens. De leeftijd van het heelal, daarentegen, is slechts 100 miljoen (108) keer de typische leeftijd van een mens. Een ander voorbeeld: de leeftijd van de Aarde beslaat maar liefst een derde van de leeftijd van het heelal, maar het volume van de Aarde is volledig verwaarloosbaar in het heelal. Dit verschil is wel heel extreem, en heeft twee redenen: de naar menselijke maatstaven hoge lichtsnelheid (zo’n 300.000 kilometer per seconde) en het aantal ruimtelijke dimensies van het heelal (drie). De lichtsnelheid is nauw gerelateerd aan de snelheid waarmee het heelal uitzet, en het aantal dimensies van de ruimte zorgt ervoor dat een grote verhouding tussen afstanden leidt tot een nog veel grotere verhouding tussen volumes.

Sterrenstelsels zijn oases van massa en licht in een verder koud en leeg heelal. Bron: Wikimedia Commons
Sterrenstelsels zijn oases van massa en licht in een verder koud en leeg heelal. Bron: Wikimedia Commons

Chemische samenstelling

Ten slotte is er nog een groot verschil tussen de chemische elementen die we op Aarde tegenkomen en degene die het meest voorkomen buiten de Aarde. Een mens bestaat voor ongeveer twee derde uit zuurstof (per massa-eenheid). Dit komt doordat we vooral uit water bestaan. De rest is vooral koolstof en waterstof, en in mindere mate stikstof, calcium en fosfor. Zuurstof is met zo’n 50% ook het meestvoorkomende element in de aardkorst, gevolgd door silicium, aluminium en ijzer (gesteente bestaat voor een groot gedeelte uit silicium dioxide).

Nu naar het heelal: hier komen we juist vooral de lichtste elementen waterstof (74%) en helium[2] (24%) tegen, die al kort na de Oerknal zijn gevormd. Zwaardere elementen als koolstof, zuurstof en ijzer zijn gevormd bij kernfusie in sterren, en tijdens explosies van zware sterren (supernova’s). Zij vormen twee procent van alle elementen in het heelal. De reden dat de Aarde juist hoge concentraties van deze elementen bevat maar (relatief) weinig waterstof en helium is dat deze lichte elementen zijn weggeblazen door de zonnewind kort na de vorming van de Aarde. In de zware planeten verder weg van de Zon, zoals Jupiter, komen deze wel volop voor.

Noten
[1] Het zichtbare heelal is het gedeelte van het heelal van waaruit informatie ons heeft kunnen bereiken sinds de Oerknal. Hoe groot het heelal als geheel is, en of haar volume überhaupt eindig is, is onbekend.
[2] Helium is nota bene voor het eerst ontdekt in het spectrum van de Zon (vandaar de naam). In 1868 vond men tijdens een zonsverduistering een lijn op een specifieke golflengte in dit spectrum die duidde op de aanwezigheid van een toen onbekend element.

A520 kent zes massacentra (zie cijfers). De totale doorsnede is rond de 4 miljoen lichtjaar.

Het A520 mysterie

Donkere materie blijkt soms veel stroperiger te zijn dan tot nu toe gedacht. Wat gebeurt er in het donkere hart van A520? Nieuwe waarnemingen maken het raadsel alleen nog groter.

Het raadsel van supercluster A520
A520 is een galactische supercluster, dat wil zeggen: behorende tot de grootste structuren die we in het heelal kennen. A520 is het product van de botsing van enkele superclusters.

Nu is er met A520 wat vreemds aan de hand. Astronomen bestudeerden de zwaartekrachtsverdeling in Abell 520 door de zwaartekrachtslenswerking van de materie in A520 te analyseren met de Hubble ruimtetelescoop.

A520 kent zes massacentra (zie cijfers). De totale doorsnede is rond de 4 miljoen lichtjaar.
A520 kent zes massacentra (zie cijfers). De totale doorsnede is rond de 4 miljoen lichtjaar.

Onverklaarbare klontering donkere materie
Superclusters bevatten, zoals alle groepen melkwegstelsels, naast materie, een veelvoud aan donkere materie.  Analyses van eerdere  botsingen wezen uit dat de bijbehorende wolken donkere materie door elkaar bewogen. Bij deze botsing klontert de donkere materie echter opeen in het centrum, een verschijnsel dat nog nooit eerder is waargenomen. Ook zendt dit gebied erg veel röntgenstraling uit (de rode gloed in de afbeelding).

Dit maakt het raadsel van wat donkere materie eigenlijk is, alleen maar groter. Klaarblijkelijk gedraagt deze zich verschillend in omstandigheden die in grote lijnen sterk op elkaar lijken. In sommige gevallen lijkt het zich als een weerstandsloos fluïdum te gedragen, in dit geval meer als een gaswolk (zij het dan dat er van excessieve stervorming geen sprake is).

Mogelijke verklaringen
Door de onderzoekers zijn verschillende mogelijke verklaringen genoemd, die echter ook volgens de onderzoekers zelf geen van alle erg bevredigend zijn. Zo betekent deze waargenomen massaverdeling, ook uit eerdere metingen, dat de opeenhoping niet door donkere materie die met zichzelf reageert veroorzaakt kan zijn. Het is ook mogelijk dat dit cluster toevallig erg rijk is aan donkere materie. Diot zou dan wel het eerst bekende cluster ooit zijn waarvoor deze uitzonderlijke verhouding geldt, dus ook dit is een minder waarschijnlijke verklaring. Ook de aanwezigheid van een dun filament is mogelijk (maar ook hier: minder waarschijnlijk). Hopelijk wijst toekomstig onderzoek uit wat de precieze oorzaak is.

Bron
H. Hoekstra et al., A Study of the Dark Core in A520 with Hubble Space Telescope: The Mystery Deepens, Arxiv (2012)

Onze naaste grote buur, het Andromedastelsel, vormt net als de Melkweg nauwelijks sterren meer. Andere melkwegstelsels zijn hyperactief. Waarom?

Mysterieuze invloed schakelt melkwegstelsels direct uit

Vele miljarden jaren geleden vormde ons melkwegstelsel veel sterren. Nu nauwelijks meer. De overgang moet heel snel zijn gegaan, blijkt nu. Wat is de mysterieuze invloed die melkwegstelsels zo snel het zwijgen oplegt? Zijn we ten dode opgeschreven of is ons melkwegstelsel in staat tot een verjongingskuur?

Bij wetenschappers is al een aantal jaren bekend dat sterrenstelsels in het nabije heelal veel sterren vormen of juist niet. Maar een nieuw onderzoek van het verre heelal laat zien dat zelfs heel jonge sterrenstelsels, tot 12 miljard lichtjaar, hetzij sterren vormen hetzij in slaap zijn, wat betekent dat sterrenstelsels zich op deze manier hebben gedragen voor meer dan 85 procent van de geschiedenis van het universum.

Onze naaste grote buur, het Andromedastelsel, vormt net als de Melkweg nauwelijks sterren meer. Andere melkwegstelsels zijn hyperactief. Waarom?
Onze naaste grote buur, het Andromedastelsel, vormt net als de Melkweg nauwelijks sterren meer. Andere melkwegstelsels zijn hyperactief. Waarom?

“Het feit dat we zulke jonge sterrenstelsels in het verre heelal die al ophielden sterren te vormen is opmerkelijk,” zegt Kate Whitaker, een Yale University afgestudeerde student en hoofdauteur van het artikel dat is gepubliceerd in de online editie van het Astrophysical Journal op 20 juni.

Om te bepalen of de sterrenstelsels in slaap waren of wakker, verzonnen Whitaker en haar collega’s een nieuwe set filters, die elk gevoelig zijn voor verschillende golflengten van het licht. Deze bevestigden ze op de 4-meter telescoop Kitt Peak in Arizona. Ze bracht 75 nachten door met turen in in het verre heelal en het verzamelen van het licht van 40.000 sterrenstelsels, variërend in afstand van het nabije heelal tot 12 miljard lichtjaren van ons verwijderd. Het resulterende onderzoek is het grondigste en meest complete ooit gedaan op die afstanden en golflengten van het licht.

Het team kwam er achter dat de sterrenstelsels ‘duaal gedrag’ vertoonden op basia van de kleur van het licht die ze uitzenden. Sterrenstelsels met veel stervorming lijken blauwer, omdat ze veel felle, kortlevende blauwe reuzensterren kennen.  In passieve slaperige sterrenstelsels zijn deze al lang geleden uitgebrand, waardoor het licht van de langlevende kleine sterren gaat overheersen en het licht naar de rode kant van het spectrum neigt.

De onderzoekers vonden veel meer actieve sterrenstelsels dan slapende, wat overeenkomt met het huidige denken dat sterrenstelsels actief met stervorming begonnen voordat ze uiteindelijk af gingen sluiten.

“We hebben niet veel sterrenstelsels in de tussenstaat aangetroffen”, zegt Pieter van Dokkum, een Yale astronoom en een andere auteur van het artikel. “Deze ontdekking laat zien hoe snel sterrenstelsels van de ene toestand naar de andere springen, van de actieve vorming van sterren tot het stopzetten van stervorming.”

Of de slapende sterrenstelsels volledig zijn afgesloten, blijft een open vraag, aldus Whitaker. Echter, de nieuwe studie suggereert dat de actieve sterrenstelsels sterren vormen met een snelheid, ongeveer 50 keer groter dan hun slaperige tegenhangers.

“Vervolgens hopen we  te bepalen of sterrenstelsels heen en weer gaan tussen waken en slapen of dat ze in slaap vallen en nooit meer wakker worden”, aldus Van Dokkum. “We zijn ook geïnteresseerd in hoe lang het duurt tot sterrenstelsels in slaap vallen, en of we één kunnen betrappen terwijl het inslaapt.”

Maar… misschien hebben we de boosdoener al te pakken….

Bronnen
1. Astronomers discover that galaxies are either asleep or awake, Yale University press. comm., (2011)
2. Whitaker, K.  et al., THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS AND THE BIMODAL
COLOR DISTRIBUTION OF GALAXIES OUT TO Z ∼ 3, Arxiv.org

Een grote storm (de paarse vlamachtige structuur) maakt korte metten met de gasvoorraad in dit melkwegstelsel. Bron: ESA

‘Galactische stormen vegen sterrenstelsels schoon’

Het is al tijden een raadsel waarom de kernen van sterrenstelsels zo arm aan gas zijn. Waarnemingen met het PACS instrument aan boord van ESA’s Herschel ruimteobservatorium hebben de dader nu op heterdaad betrapt.

Een grote storm (de paarse vlamachtige structuur) maakt korte metten met de gasvoorraad in dit melkwegstelsel. Bron: ESA
Een grote storm (de paarse vlamachtige structuur) maakt korte metten met de gasvoorraad in dit melkwegstelsel. Bron: ESA

Galactische jeugd eindigt plotseling
In jonge melkwegstelsels (zoals die vlak na het ontstaan van het universum gevormd zijn) worden er veel meer sterren gevormd dan nu. Deze melkwegstelsels lichten fel op door de vorming van kortlevende blauwe reuzensterren. Dan gebeurt er iets, waardoor de stervormingssnelheid plotseling sterk terugvalt en ook het zwarte gat in het centrum veel minder snel groeit.

Sterrenwinden
Het mysterieuze proces slaagt er in, in slechts enkele miljoenen jaren melkwegstelsels schoon te blazen en in één klap tot middelbare leeftijd te brengen.

Waarnemingen van de infrarooddetector en spectrometer PACS aan boord van Herschel hebben nu de oorzaak opgehelderd. Krachtige sterrenwinden, waarschijnlijk opgewekt door de felle stervorming (en vele sterexplosies)  en activiteit van het zwarte gat in het centrum van melkwegstelsels, blazen de melkwegstelsels schoon.

De lichtdruk van de felle straling die vrijkomt bij supernova’s en erupties van zwarte gaten blaast de lichte waterstofmoleculen met ongeveer 1000 km per seconde (drie promille van de lichtsnelheid) uit het melkwegstelsel.

Dit proces werkt zeer snel: per jaar verdwijnen op deze manier ongeveer duizend zonsmassa’s uit het galactische centrum, zodat in een paar miljoen jaar miljarden zonsmassa’s aan materie verdwenen zijn. Precies de hoeveelheid ontbrekend interstellair gas en hiermee de verklaring voor de sterk afnemende stervormingssnelheid.

Moleculaire waterstofwolken
PACS is in staat om straling van moleculair waterstof waar te nemen. Juist deze waterstofsoort maakt stervorming mogelijk. Deze waarneming verklaart ook een andere waarneming: de samenhang tussen de massa van sterren in het centrum van een melkwegstelsel en die van het zwarte gat. Zodra de sterrenwinden het centrum schoon hebben geblazen, wordt de massa van het centrum terugggebracht.

Elliptische melkwegstelsels
De enorme elliptische melkwegstelsels zijn het resultaat van botsingen van spiraalstelsels. In elliptische melkwegstelsels komt nauwelijks stervorming voor. Onderzoekers denken daarom dat soortgelijke effecten elliptische melkwegstelsels hebben schoongeblazen.

Opmerkelijk is ook dat in elliptische melkwegstelsels veel minder donkere materie voorkomt dan in spiraalstelsels. Om die reden vermoeden sommige astronomen dat donkere materie voor een deel uit voor radiotelescopen onzichtbare, koude moleculaire waterstofwolken bestaat. Als dat zo is, is deze moleculaire waterstof waarschijnlijk door de sterrenwinden uit de elliptische melkwegstelsels geblazen.

Bronnen
Sturm, E. et al., Massive molecular outflows and negative feedback in ULIRGs observed by Herschel-PACS, The Astrophysical Journal, 2011; 733 (1)
Caught in the Act: Herschel Detects Gigantic Storms Sweeping Entire Galaxies Clean, Science Daily

De evolutie van het heelal, volgens de tegenwoordige theorieën.

Het Gemini mysterie

Recente waarnemingen aan moeilijke zichtbare verre melkwegstelsels van meer dan tien miljard jaar oud, tonen aan dat deze opmerkelijk rijp zijn voor hun leeftijd. Hoe kunnen zo snel na de Big Bang al doorontwikkelde melkwegstelsels zijn ontstaan? Kloppen onze theorieën wel?

Van dwergstelsel tot megastelsel
Melkwegstelsels komen voor in allerlei soorten en maten. Zo zijn er melkwegstelsels (denk aan de Magellaanse Wolken) die veel kleiner zijn dan het onze. Deze bestaan uit enkele honderden miljoenen sterren. Volgens de op dit moment populaire kosmologische theorieën waren dit (vanaf een miljard jaar na de Big Bang) de eerste melkwegstelsels die ooit gevormd werden. Door vele botsingen van de dwergstelsels vormden ze grotere stelsels. Pas na enkele miljarden jaren vormden deze stelsels zo groot als onze eigen Melkweg.

Redshift desert
Nieuwe waarnemingen van het Gemini Observatory van stelsels in de zogeheten “Redshift desert”, een periode drie tot zes miljard jaar na de Big Bang, zetten dit overzichtelijke plaatje echter totaal op zijn kop. De onderzoekers namen namelijk melkwegstelsels waar die veel ouder waren dan volgens dit populaire model kan. De ouderdom van een melkwegstelsel is onder meer te zien aan de helderheid. In een jong melkwegstelsel vindt heel veel stervorming plaats.

De evolutie van het heelal, volgens de tegenwoordige theorieën.
De evolutie van het heelal, volgens de tegenwoordige theorieën.

Hoe stel je de leeftijd van een melkwegstelsel vast?
De belangrijkste methode is de roodverschuiving meten. Omdat het heelal overal ongeveer even snel uitzet, lijken melkwegstelsels op vele miljarden lichtjaar afstand snel van ons af te bewegen. Als gevolg hiervan wordt hun licht uitgerekt. De mate van uitrekking is te meten. In licht komen namelijk spectraallijnen voor: een soort vingerafdruk van de atomen waar het licht door wordt uitgezonden of wordt geabsorbeerd. Elk los atoom of molecuul heeft een unieke vingerafdruk: het absorptie (of emissie-) spectrum. Zo hebben natriumionen twee karakteristieke heldergele spectraallijnen. De reden dat je een geel licht ziet als je keukenzout (natriumchloride) in een gasvlam laat vallen.  Als deze vingerafdruk plotseling in veel roder licht voorkomt dan normaal, weet de astronoom dat dit object van hem af beweegt.

Dit zegt echter niet veel over de conditie van het melkwegstelsel. Daarvoor kan je beter letten op de lichtverdeling. Als er veel stervorming plaatsvindt, worden er ook veel reuzensterren gevormd. Reuzensterren leven zeer kort, enkele tientallen miljoenen jaren, en zenden veel blauw licht uit. Als gevolg daarvan licht een jong stelsel op als een kerstboom. Als de stervorming stopt, is het ook snel met deze reuzensterren gedaan en treedt het melkwegstelsel een stabielere, ‘rijpere’ fase in. Zo is de stervormingssnelheid in onze eigen Melkweg nog maar een kwart van wat deze miljarden jaren geleden was. In rijpere melkwegstelsels wordt het licht van langlevende zonachtige sterren en rode dwergsterren overheersend. Daarvoor werd dat overstraald door de heldere reuzensterren.

Een tweede techniek is letten op het voorkomen van metalen. Metalen zijn volgens astronomen alle elementen behalve waterstof en helium. In de praktijk dus: alle atomen die niet bij de oerknal gevormd zijn. Sterren vormen tijdens hun bestaan door kernfusie zwaardere elementen. Zo wordt waterstof gefuseerd tot helium, helium tot koolstof enzovoort.   Als het licht van een melkwegstelsel veel sporen van bijvoorbeeld koolstof, zuurstof of ijzer bevat, is dat dus een bewijs dat het al van een gevorderde leeftijd is.

Je kan ook letten op de grootte en vorm. Grote melkwegstelsels (zoals ons eigen stelsel) zijn het resultaat van vele samensmeltingen van dwergstelsels en daarmee vermoedelijk veel ouder dan dwergstelsels. Als een dwergstelsel nooit samensmelt, kan ook dit uiteraard een hoge ouderdom bereiken. Hier zijn meerdere voorbeelden van bekend.

Gemini Deep Deep Survey
Waarnemingen tot nu toe concentreerden zich alleen op de helderste, dus “jongste” melkwegstelsels. Die zijn namelijk het makkelijkst waar te nemen (de lichtzwakke stelsels zijn driehonderd keer zwakker dan het licht van de atmosfeer). Uiteraard levert dat een erg vertekend beeld op. De Gemini telescopen zijn een tweetal volkomen identieke acht-meter spiegeltelescopen, waarvan er één op de vulkaankegel Mauna Kea op Hawaii staat en de andere in Chili. GDDS is een internationaal samenwerkingsverband dat het spectrum onderzocht van driehonderd melkwegstelsels uit de “redshift desert”, waaronder evenredig veel lichtzwakke exemplaren, die astronomen daarvoor maar “even” hebben laten liggen. Daardoor ontstond een realistischer beeld. Naar blijkt, zijn de lichtzwakke stelsels veel rijper dan kan volgens de theorieën. Het gas tussen de sterren in de stelsels bevat veel meer metalen dan verwacht.

Eerste buitenaardse leven veel eerder dan gedacht?
In de buurt van de allereerste sterren konden zich geen planeten vormen, omdat er alleen waterstof en helium bestonden. Metaalrijke stelsels bevatten veel grondstoffen voor planeten: ijzer, silicium, zuurstof. Nu we hebben ontdekt dat ook zeer jonge melkwegstelsels dus planeten konden vormen, zou het leven al snel voet aan de grond moeten hebben gekregen in het universum, al ver voordat de aarde zelfs maar werd gevormd. Zouden onze verre nakomelingen ruïnes van buitenaardse beschavingen kunnen vinden in de buurt van uitgebrande sterren?

Bronnen
Gemini

De onregelmatige vorm van NGC 4254 wordt veroorzaakt doordat een donkere-materie melkwegstelsel het uit elkaar trekt, denken sommige astronomen.

Melkwegstelsel omringd door talloze onzichtbare melkwegstelsels

In 2006 werd een enorme wolk waterstofgas ontdekt die dit melkwegstelsel in ongeveer vijftig miljoen jaar zal bereiken. Deze wolk is vermoedelijk niet de enige. De melkweg wordt omringd door vele onzichtbare dwergmelkwegstelsels die vrijwel alleen uit waterstofgas bestaan. En veel, heel veel donkere materie…

Donkere dwergmelkwegstelsels
Volgens donkere-materie modellen moet ons heelal krioelen van ophopingen donkere materie met nauwelijks sterren. Koud waterstofgas, zoals dat in de interstellaire ruimte voorkomt, is optisch onzichtbaar.

De onregelmatige vorm van NGC 4254 wordt veroorzaakt doordat een donkere-materie melkwegstelsel het uit elkaar trekt, denken sommige astronomen.
De onregelmatige vorm van NGC 4254 wordt veroorzaakt doordat een donkere-materie melkwegstelsel het uit elkaar trekt, denken sommige astronomen.

Het eerste “onzichtbare” dwergmelkwegstelsel,  VIRGOHI 21, werd daarom met de Nederlandse radiotelescoop van Westerbork ontdekt. Dit melkwegstelsel bevat extreem weinig sterren. De massa blijkt daarentegen groot: alleen al het waterstofgas is voldoende om honderd miljoen zonachtige sterren te vormen: een duizendste van de massa van de Melkweg. De snelheid waarmee VIRGOHI 21 ronddraait is echter veel te hoog om verklaard te kunnen worden door het waterstofgas. Er moet ongeveer vijfhonderd keer meer onzichtbare materie zijn dan direct wordt waargenomen. Het naburige stelsel NGC 4254 ziet er erg onregelmatig uit. Vermoedt wordt dat de zwaartekracht van de grote hoeveelheid donkere materie van VIRGOHI 21, het naburige stelsel NGC 4254 uit elkaar trekt.

Niet alle astronomen zijn het overigens een met deze interpretatie. Volgens sommigen gaat het hier om draaikolken in het kielzog aan gas dat om het vlak van het melkwegstelsel heen hangt, losgetrokken door het passeren van een ander melkwegstelsel. Dit zou ook de hoge gemeten schijnbare rotatiesnelheden verklaren.

Animatie

Bijvultanks voor melkwegstelsels?
Een al langer bestaand raadsel is hoe melkwegstelsels nog zo lang door kunnen gaan met stervorming. Astronomen denken nu dat deze bijna onzichtbare dwergstelsels melkwegstelsels ‘bevoorraden’ met waterstofgas. Veel gas wordt namelijk opgestookt bij de vorming van sterren. Volgens berekeningen zou de snelheid van stervorming in melkwegstelsels na ongeveer een miljard jaar sterk dalen. Als ons melkwegstelsel (en andere) geregeld wordt ‘bijgevoerd’ met vers gas uit dit soort donkere dwergmelkwegstelsels (als ze dat inderdaad zijn), dan zou dat verklaren waarom ook nu, na vele miljarden jaren, ons melkwegstelsel nog steeds niet ten dode is opgeschreven.

Bronnen
Daily Galaxy
Robert Minchin, Arecibo
Berkeley universiteit

Een puzzel van galactisch formaat: waarom draaien de sterren vlak bij het centrum zo langzaam?

Gedrag melkwegstelsels niet te verklaren met donkere materie

De combinatie van donkere materie, onzichtbare massa die alleen door middel van haar zwaartekracht invloed uitoefent en donkere energie, die de plotseling snelle uitzetting van het heelal moet verklaren, is op dit moment het meest populair om het gedrag van het heelal te verklaren. Gasrijke melkwegstelsels, een type melkwegstelsel met weinig sterren maar veel gaswolken, blijken echter veel beter te beschrijven met de alternatieve zwaartekrachtstheorie MOND. Spannende tijden…

Het fundamentele probleem: waarom draaien de sterren aan de binnenkant van melkwegstelsels niet sneller rond?
Melkwegstelsels gedragen zich vreemd.

Een puzzel van galactisch formaat: waarom draaien de sterren vlak bij het centrum zo langzaam?
Een puzzel van galactisch formaat: waarom draaien de sterren vlak bij het centrum zo langzaam?

Volgens de zwaartekrachtstheorieën van Newton en Einstein moeten sterren die zich vlakbij het centrum van de melkweg bevinden veel sneller rond draaien dan ze in werkelijkheid doen. In het zonnestelsel is dat bijvoorbeeld zo: de binnenplaneet Mercurius beweegt veel sneller in haar baan dan de aarde. Dit blijkt echter niet te kloppen voor melkwegstelsels: buiten de ‘bulge’ blijken de omloopsnelheden van sterren veel minder sterk af te nemen dan voorspeld door Newton en Einstein. Iets moet er dus voor zorgen dat sterren zich zo vreemd gedragen.

Donkere materie?
Volgens donkere-materie aanhangers is dat onzichtbare materie: materie die we niet kunnen waarnemen, behalve door de zwaartekracht. Volgens theorieën hangt er rond elk melkwegstelsel een bolvormige wolk donkere materie. Sterren die ver van de kern afstaan, worden aangetrokken door bijna de hele wolk en draaien dus sneller dan sterren die vlak bij de kern staan (waar de aantrekkingskracht van het grootste deel van de wolk elkaar opheft – als je in het centrum van de aarde zou staan zou je ook niets wegen, dit heet de schilstelling). Donkere materie vliegt door ons heen zonder dat we er wat van kunnen merken. Volgens theorieën zou er vier keer zoveel donkere materie zijn als ‘gewone’ zichtbare materie.  Een belangrijke uitdaging voor de moderne natuurkunde is het vinden van deeltjes die in aanmerking komen om als donkere materie dienst te doen.

Of kloppen onze zwaartekrachtwetten op grote schaal gewoon niet?
Andere kosmologen denken dat het verschijnsel wordt veroorzaakt omdat zwaartekracht zich op zeer grote afstanden anders gedraagt dan door Newton en Einstein voorspeld.

Het reusachtige elliptische melkwegstelsel NGC 1316 is vermoedt men ontstaan doordat gasrijke stelsels met elkaar botsten.
Het reusachtige elliptische melkwegstelsel NGC 1316 is vermoedt men ontstaan doordat gasrijke stelsels met elkaar botsten.

De populairste theorie is MOND, modified newtonian dynamics. MOND voorspelt redelijk nauwkeurig het gedrag van alle typen melkwegstelsels: elliptische stelsels, spiraalstelsels en onregelmatige stelsels. MOND bleek echter niet te kloppen voor nog grotere structuren zoals galactische clusters en superclusters (groepen melkwegstelsels). Ook een botsing van twee melkwegstelsels leverde gedrag op dat niet consistent was met MOND.

Een steuntje in de rug voor MOND is een recente ontdekking van astronoom Stacey McGouch dat MOND het gedrag van gasrijke melkwegstelsels nauwkeuriger verklaart dan welke donkere-materie theorie ook. Gaswolken vormen de kraamkamers van sterren: bevat een melkweg veel gas, dan kunnen zich hierin veel sterren vormen. Het probleem bij eerdere testen van MOND is het gebrek aan meetnauwkeurigheid van stermassa’s in melkwegstelsels. Dit probleem doet zich niet voor bij metingen aan gaswolken. De manier waarop gaswolken tussen sterren licht uitzenden is nauwkeurig bekend, waardoor de massa en rotatiesnelheden van de melkwegstelsels nauwkeurig geschat kunnen worden.
Deze metingen werden bij zevenenveertig gasrijke melkwegstelsels uitgevoerd en inderdaad bleek MOND de waarnemingen het beste te verklaren. Probleem blijft wel dat op zowel kleinere (tot de grootte van het zonnestelsel is MOND maar infinitesimaal weinig afwijkend) als grotere (het gedrag van clusters en superclusters) schaal de bestaande zwaartekrachtstheorieën nauwkeuriger zijn dan MOND. Wat dan de merkwaardige dans van melkwegstelsels wél verklaart? Wie hier het antwoord op weet, kan waarschijnlijk alvast gaan nadenken over wat hij met zijn Nobelprijs gaat doen…

Bron: Physorg/Arxiv