Nieuwe, goedkopere ontwerpen voor tokamaks, zoals deze ARC-2 reactor, beloven betaalbare fusie-energie binnen bereik te brengen. Bron: MIT

Welke methoden voor kernfusie zijn er?

Kernfusie, het proces dat de zon haar energie geeft, is de overvloedigste energiebron die we kennen. Helaas is er nog steeds geen kernfusiereactor die meer nuttige energie levert dan er in gaat, maar het over-unity punt komt in zicht.

Wat is kernfusie?
De energiegunstigste atoomkernen zijn stabiele ijzer- en nikkelkernen met rond de 50-60 deeltjes in de kern. Recordhouder is de atoomkern ijzer-56 met 26 protonen en 30 neutronen. Hieromheen hangen dan weer 26 elektronen, die de positieve lading van de protonen neutraliseren.
Er zijn twee manieren om energie uit atoomkernen te halen: kernsplitsing en kernfusie. Het resultaat van beide is dat de nieuw ontstane atoomkernen qua grootte meer op die van ijzer en nikkel gaan lijken. Kernsplitsing, waarbij zware atoomkernen zoals die van uranium uiteenvallen in lichtere, levert in kerncentrales nu al veel energie. Nadeel van kernsplitsing is dat er meestal instabiele, radioactieve atoomkernen ontstaan.

Nieuwe, goedkopere ontwerpen voor tokamaks, zoals deze ARC-2 reactor, beloven betaalbare fusie-energie binnen bereik te brengen. Bron: MIT
Nieuwe, goedkopere ontwerpen voor tokamaks, zoals deze ARC-2 reactor, beloven betaalbare fusie-energie binnen bereik te brengen. Bron: MIT

Kernfusie, waarbij lichte atoomkernen (denk aan waterstof-2, helium-3 en lithium-6) samensmelten tot zwaardere, lukt op dit moment alleen op kleine schaal in fusors (waar het veel meer benutbare energie kost dan er vrijkomt) en natuurlijk in waterstofbommen. Omdat er veel meer lichte atomen zijn dan zware, en de opbrengst per kerndeeltje veel groter is (en er nauwelijks gevaarlijke instabiele isotopen ontstaan), is kernfusie een erg interessant proces om de steeds energiehongeriger wereld van voldoende energie te voorzien.

Hoe laat je atoomkernen op elkaar botsen?
Atoomkernen bestaan uit positief geladen deeltjes, de protonen, en neutrale neutronen. De neutronen vormen de lijm, die met hun sterke kernkracht-interactie de protonen bij elkaar houden. De protonen stabiliseren weer de neutronen, omdat ze het voor de neutronen erg energie-ongunstig maken om uiteen te vallen in een proton met elektron. HET technische probleem bij kernfusie is, de atoomkernen die je wil laten fuseren elkaar te laten raken. Immers, ze stoten elkaar af door hun positieve lading. Schiet je maar een fractie te hard, dan kaatsen de kernen weg voordat ze kunnen fuseren.

Samenpersen en koude kernfusie
Hier kan je verschillende strategieën voor volgen. In een waterstofbom en de Amerikaanse Z-pinch Z Machine worden de atoomkernen zeer sterk op elkaar geperst (door een splijtingsbom resp. lasers). Waterstofbommen werken, helaas. De Z Machine wekt fusie op, maar te weinig om te benutten voor stroomproductie.

In een fusor worden kernen afgeschoten op de doelwit-kernen, wat een (lage) hoeveelheid kernfusie oplevert. Met muonfusie worden elektronen vervangen door de zware muonen, waardoor de kernen veel dichter op elkaar komen te zitten, met een veel grotere kans op fusie, zelfs bij kamertemperatuur. Helaas zijn muonen zeer instabiel en kost het veel meer energie om de muonen te maken, dan de fusie oplevert. Muonfusie is de enige bekende werkende methode voor LENR, een verzamelterm voor lage-temperatuur kernfusie. LENR is in de wetenschappelijke wereld zeer omstreden. Op dit moment is er geen fusie aangetoond in een LENR-reactor. Althans: niet door publicatie in een peer-reviewed mainstream wetenschappelijk tijdschrift. Enkele honderden gedreven onderzoekers trotseren de banvloek van de mainstream wetenschap met hun LENR-onderzoek. Zij geloven wel kernfusie te stellarator hebben gerealiseerd, zij het nog te weinig om als energiebron te dienen.

De tokamak
Dan komen we bij de derde voornaamste techniek om kernfusie te realiseren. Schep een gas (bij deze temperaturen: een plasma) van vele miljoenen graden heet. Binnen dit plasma vinden zoveel botsingen plaats, dat er altijd enkele botsingen precies de juiste snelheid hebben voor kernfusie. Als je voorkomt dat het plasma te snel weglekt en energie verliest, heb je een reactor. De succesvolste reactor van dit type is de tokamak, uitgevonden in de toenmalige Sovjet-Unie. De tokamak is een donutvormige ring van plasma, die op zijn plaats wordt gehouden met enorme elektromagneten en een sterke ringvorminge elektrische stroom door het plasma. Dit plasma is namelijk zo heet, dat geen enkel bekend materiaal er tegen bestand is. ITER, de onderzoeksreactor in het Franse Cadarache, is van dit type. Een andere, na een lange tijd weer populairder wordend model is de stellarator.

Laat een reactie achter