astronomie

Een nova. Op een uitgebrande ster hoopt zich zoveel helium onder hoge temperatuur en druk op dat het ontploft: de heliumflits.

Supernovae en hypernovae: kosmische waterstofbommen

Onze aarde wordt omringd door enkele grote, zware reuzensterren die op instorten staan. Wat zijn de gevolgen als één van die sterren op korte termijn zal ontploffen?

Kernfusie, de energiebron van sterren
Om te begrijpen hoe sterren leven en sterven, is het erg handig wat meer te weten over kernfusie: de energiebron die de zon en andere energie-opwekkende sterren laat schijnen. Sterontploffingen worden namelijk veroorzaakt door onevenwichtigheden in de fusiereacties in de kern, bijvoorbeeld omdat de brandstof opraakt. Sterren leiden het grootste deel van hun bestaan een rustig leven. Door de energie die kernfusie produceert, blijft de kern heet en zorgt de gasdruk van het hete gas dat de zwaartekracht de ster niet verplettert tot een witte dwerg of neutronenster.

Heliumflits veroorzaakt nova
Dat werkt heel aardig totdat bijna alle waterstof op is. Daardoor neemt de energieproductie af, de zwaartekracht grijpt meteen de kans. De nog niet uitgeputte, waterstofrijke laag rond de kern wordt zo dicht en heet dat de waterstof hierin gaat fuseren en de ster opzwelt: het rode-reusstadium. De zon wordt dan zo groot dat ze de aarde opslokt.

Een nova. Op een uitgebrande ster hoopt zich zoveel helium onder hoge temperatuur en druk op dat het ontploft: de heliumflits.
Een nova. Op een uitgebrande ster hoopt zich zoveel helium onder hoge temperatuur en druk op dat het ontploft: de heliumflits.

Het bijzondere aan gedegenereerde materie is dat de tegendruk niet wordt geleverd door hitte, maar door kwantumeffecten. Het Pauliverbod verbiedt dat bepaalde deeltjes zoals protonen en elektronen (‘fermionen’) te dicht bij elkaar komen. Deze tegendruk is onafhankelijk van de temperatuur. Gedegenereerde materie is tegelijkertijd een zeer goede warmtegeleider. Het gevolg is dat als helium begint te fuseren, de kern niet opzwelt en de reactie dus totaal uit de hand loopt. Gedurende slechts enkele minuten tot uren produceert de ster extreem veel energie: de heliumflits. Als gevolg hiervan wordt de kern zo heet dat de gedegenereerde materie weer verandert in ‘gewone’ materie, de kern uitzet en de rode reus weliswaar iets kleiner, maar nog feller wordt: de asymptotic giant branch fase. Bij lichtere sterren zoals de zon blijft het bij heliumfusie. Als het helium opgebrand is, zakt de rode reus weer ineen, lopen de temperaturen weer extreem hoog op en worden de buitenste gaslagen keer op keer weggeblazen tot alleen een witgloeiende witte dwerg overblijft. Deze uitgebrande ster koelt in de loop van tientallen miljarden jaren langzaam af tot een zwarte dwerg.

Gewoonlijk wordt al deze energie opgeslokt door de kern en gasschil er omheen en merken we er niets van. Bij sommige dubbelsterren slokt een witte dwerg, een extreem dicht bolletje zo zwaar als een ster maar slechts zo groot als de aarde, waterstofgas op van zijn nog niet uitgebrande  partnerster. Als gevolg fuseert waterstof tot helium en ontstaat een heliumschil rond de uitgebrande ster. Dit helium wordt op een gegeven moment zo dicht samengeperst dat  gedegenereerde materie ontstaat en er een heliumflits optreedt die we wel kunnen waarnemen: een nova. De uitgebrande ster stoot de omringende gasschil af, maar overleeft dit en het proces kan zich keer op keer herhalen.

Supernova: de totale vernietiging van een ster
In het buitenste deel van de kern zit helium die niet heet genoeg is om te fuseren en daarbuiten nog waterstof. Hoe zwaarder de ster, hoe meer van dit soort stappen optreden en hoe meer schillen er ontstaan.

Een zware ster aan het einde van zijn leven heeft wel wat weg van een toverbal. Concentrische schillen bevatten atomen als koolstof, silicium en zuurstof.
Een zware ster aan het einde van zijn leven heeft wel wat weg van een toverbal. Concentrische schillen bevatten atomen als koolstof, silicium en zuurstof.

Opeenvolgend zijn dit helium, koolstof, neon, zuurstof, silicium en uiteindelijk ijzer. Hierbij komt echter veel minder energie vrij dan bij de fusie van waterstof tot helium dus deze fases duren veel korter, uiteindelijk zelfs maar enkele uren bij heel zware sterren. Bij zeer zware sterren gaat het fuseren door tot het eindproduct ijzer is.

Zwaardere atoomkernen dan ijzer (bijvoorbeeld koper, goud en uranium) maken kost energie, dus er is dan niets meer wat de instorting stop kan zetten. Dus als de ijzerkernen samensmelten tot nog zwaardere kernen, koelt de kern heel snel af. Het gevolg: niets houdt de instorting van de buitenste gaslagen meer tegen en met donderend geweld stort de ster ineen.  Hierbij komt zoveel energie vrij dat een groot deel van de materie in de buitenste schillen in een vernietigende kernreactie in enkele uren wordt omgezet en vervolgens vrijwel de complete ster wordt opgeblazen: een supernova. Alleen de binnenste kern blijft over. Deze is nu zo dicht geworden dat zelfs atoomkernen niet meer bestaan en de hele ster als het ware is veranderd in één enorme atoomkern: een neutronenster. Wij nemen die sterren waar als pulsars. Zo staat er een pulsar in wat is overgebleven na de enorme supernova van 1054, de Krabnevel. Deze ster stond gelukkig zo ver van ons vandaan dat slechts het idee van de onveranderlijke hemel sneuvelde.

Hypernova wordt alleen overtroffen door de Big Bang
De allercatastrofaalste gebeurtenis die we kennen, de Big Bang uitgezonderd, is de hypernova. Er zijn enkele mogelijke processen bekend die een hypernova kunnen veroorzaken: een extreem zware ster-in-wording die in één klap ontploft en ineenstort tot een zwart gat, een uitgebrande extreem zware ster waarmee dit gebeurt of een ster waarin uit gammastraling massaal antimaterie (elektron-positron paren) wordt gevormd, die een kernexplosie opwekken waarbij alle brandstof van de ster in één zinderende ontploffing wordt opgestookt en de ster met donderend geraas ontploft.

Gelukkig zijn deze gebeurtenissen met één op de honderdduizend supernova’s vrij zeldzaam, in onze melkweg naar schatting ongeveer elke 200 miljoen jaar. Onderzoekers denken dat lange-duur gammaflitsen hierdoor worden veroorzaakt. In deze ontploffingen worden complete zonsmassa’s in enkele seconden omgezet in gammastraling. De hoeveelheid energie die als gammastraling vrijkomt is dan ook verbijsterend groot, zo groot zelfs dat we gammastraling van ontploffende sterren in verre melkwegstelsels nog steeds kunnen waarnemen als gammaflitsen.

Meer informatie

De aminozuurverdeling in materiaal van biologische oorsprong wijkt sterk af van die in materiaal van anorganische oorsprong.

Universele chemische handtekening leven ontdekt

Leven met een aardse biochemie ontdekken is niet zo moeilijk. Er zijn bepaalde moleculen, denk aan het suikermolecuul glucose, die alleen in aardse organismen voorkomen. Maar hoe bepaal je of die veelbelovende borrelende moddervulkaan op een verre exoplaneet wordt veroorzaakt door een anorganisch proces of toch door leven met een totaal andere chemie dan dat op aarde? De Californische biochemicus Evan Dorn en zijn team vonden een methode, een chemische handtekening van het leven..

Meercellig leven op een gasreus heeft mogelijk veel weg van een ballon.

Buitenaards leven: zoeken naar een spook
Buitenaards leven kan net als het aardse leven op DNA gebaseerd zijn.
Het is alleen zeer de vraag of dat de enig denkbare mogelijkheid is. Zo is ons zonnestelsel extreem rijk aan zuurstof. Misschien dat er op andere planeten planten voorkomen die geen zuurstof uitstoten maar chloor (wat in theorie meer energie oplevert). Op zeer koude planeten komt er misschien leven voor dat niet in water zwemt maar in vloeibaar methaan of ammoniak. Misschien bestaan er levende rotsen, bestaande uit siliciumverbindingen die extreem traag leven en bewegen. Of, op een Io-achtige wereld, is zwavel het elixir van het leven.

De handtekening van het leven
Dorn en zijn team vergeleken buitenaardse bronnen van aminozuren (koolstofchondrieten, koolstofrijke meteorieten) met synthetisch geproduceerde en door aardse organismen geleverde mengsels van aminozuren. Aminozuren zijn de bouwstenen van eiwitten. Het bleek dat in de twee mengsels van anorganische oorsprong de verdeling van aminozuren exact gelijk is aan wat op grond van thermodynamische overwegingen verondersteld mag worden. Hoe meer energie het kost een bepaald aminozuur te maken, hoe minder het voorkomt. In organische mengsels wijkt de verdeling sterk af van het thermodynamisch verwachtte mengsel.

handtekening van het leven
De aminozuurverdeling is heel anders bij levende organismen, dan bij anorganisch ontstane aminozuren. Bron: [1]
Handtekening blijkt universeel

Het zou kunnen dat dit effect alleen bij leven met een aardse biochemie optreedt. Dus nam Dorn een tweede proef, deze keer met computergesimuleerd leven. Avida is een simulatiemodel waarin uit elementaire bouwstenen bestaand kunstmatig leven instructies uitvoert. Reeksen, ‘moleculen’, met de juiste instructies kunnen zichzelf kopiëren. Hierbij putten ze uit de voorraad rondzwervende bouwstenen. Dorn mat de frequenties waarin bouwstenen voorkwamen voordat en nadat evolutie was opgetreden.

De frequenties bleken na de evolutie sterk af te wijken van de ‘normale’ frequenties. Bepaalde ‘moleculen’ werden door het Avidaanse leven veel vaker opgenomen dan andere. Kortom: het lijkt hier te gaan om een universele eigenschap van leven. Leven zorgt er op de een of andere manier altijd voor dat chemicaliën in een andere verhouding voorkomen dan volgens thermodynamische berekeningen te verwachten is. Kortom: er is een duidelijek handtekening van het leven te ontdekken.

Op zoek naar planeten met leven
We kunnen nu in principe in de atmosfeer van planeten op vele lichtjaren afstand ontdekken of er leven voorkomt. We hoeven slechts te letten op de relatieve sterkte van het spectrumsignaal voor bepaalde stoffen. Wijkt deze sterk af van wat te verwachten is op een anorganische wereld, dan is dit een definitief bewijs dat deze wereld leven bevat. Of het nu om een chloor-ademende kwal gaat, een zwaveletende schimmel of toch een op koolstof gebaseerde levensvorm, de methode werkt in principe op iedere op scheikunde gebaseerde levensvorm.

Bron

ArXiv

Hoag's Object: een ring van jonge sterren rond een bolvormig melkwegstelsel is nog steeds niet verklaard.

Geheimzinnige ring op 600 miljoen lichtjaar afstand

Hoag’s Object, een ring zo groot als een melkwegstelsel, is al meer dan een halve eeuw geleden ontdekt door de Amerikaanse astronoom Art Hoag.
Hoags Object staat zeshonderd miljoen lichtjaar ver weg. Dat wil zeggen dat het licht dat we nu zien is uitgezonden toen hier op aarde de eerste fossielen van meercellige dieren ontstonden. Waar komt deze raadselachtige ring vandaan?

Hoag's Object: een ring van jonge sterren rond een bolvormig melkwegstelsel is nog steeds niet verklaard.
Hoag's Object: een ring van jonge sterren rond een bolvormig melkwegstelsel is nog steeds niet verklaard.

Hoag’s Object bestaat uit een ring met een doorsnede van 120.000 lichtjaar (ons melkwegstelsel is honderdduizend lichtjaar in doorsnede).  Merkwaardig aan de ring is dat hij stabiel is en uit jonge, blauwe reuzensterren bestaat. De kern bestaat uit veel oudere, kleinere rode sterren. Ook is de ruimte tussen het elliptische E0 melkwegstelsel in het centrum en de ring vrijwel leeg.

Er zijn meer ringvormige melkwegstelsels bekend. Deze zijn meestal het gevolg van de botsingen van twee andere melkwegstelsels. Opvallend aan dit stelsel is dat de roodverschuiving van de ring exact gelijk is aan de roodverschuiving van de bolvormige sterrenhoop in het centrum. Dat wil zeggen dat ring en bolvormige sterrenhoop bij elkaar horen en in een stabiele configuratie verbonden zijn. Blauwe sterren leven over het algemeen naar astron0mische begrippen kort: enkele tientallen tot honderden miljoenen jaren. Ze moeten dus vrij kort geleden ontstaan zijn.

Volgens een moderne theorie zijn de sterren het gevolg van een botsing tussen een grotere en een kleinere melkweg. De zwaartekrachtseffecten verdichtten het interstellaire stof op de plek waar zich de ring bevindt zo sterk, dat de kritische massa hoog genoeg werd voor de vorming van sterren. De ring moet zich volgens deze theorie snel naar buiten verplaatsen.

Een meer omstreden theorie stelt dat de ring het resultaat is van elektrische stromen op kosmische schaal. Elektrische stromen hebben de neiging samen te trekken. Inderdaad is recent ontdekt dat de helft van alle baryonische materie (d.w.z. materie die, zoals op aarde, uit protonen, neutronen en elektronen bestaat) in het heelal bestaat uit plasmawolken tussen melkwegstelsels. Plasma is een extreem heet mengsel van losgeslagen elektronen en atoomkernen dat (afhankelijk van de dichtheid uiteraard) goed stroom geleidt. Misschien dat er voortdurende verjonging van melkwegstelsels plaatsvindt via deze plasmawolken.

De koolstofrijke gasreus WASP 12b gloeit door de hoge temperatuur oranje op.

Koolstofplaneet: steeds meer bewijs voor koolstofplaneten

De atmosfeer van de koolstofplaneet WASP12B bevat in tegenstelling tot bijvoorbeeld de aarde, meer koolstof dan zuurstof, ontdekten onderzoekers met de ruimtetelescoop Spitzer.

Eivormige gasreus

De planeet WASP 12B staat op 871 lichtjaar van de aarde en staat veertig maal dichter bij zijn zon dan de aarde: vier miljoen kilometer. De atmosfeer is extreem heet – boven de tweeduizend graden. Een jaar op WASP 12B duurt daarom ongeveer een aardse dag. De ster is iets groter dan de zon. De getijdekrachten zijn op die korte afstand enorm, waardoor de planeet een eivorm krijgt. Al eerder is ontdekt dat de planeet, anderhalf keer zo zwaar als Jupiter, langzaam wordt opgeslokt door zijn zon.

De eerst ontdekte koolstofplaneet? De eivormige, koolstofrijke gasreus WASP 12b gloeit door de hoge temperatuur oranje op.De koolstofrijke gasreus WASP 12b gloeit door de hoge temperatuur oranje op.
De eerst ontdekte koolstofplaneet? De eivormige, koolstofrijke gasreus WASP 12b gloeit door de hoge temperatuur oranje op. – NASA/JPL-Caltech

Koolstofplaneet: meer koolstof dan zuurstof

Bijzonder is de samenstelling. De atmosfeer van de koolstofplaneet bevat in tegenstelling tot bijvoorbeeld de aarde vooral methaan en koolmonoxide, dus meer koolstof dan zuurstof, ontdekten onderzoekers met de ruimtetelescoop Spitzer. Wetenschappers denken daarom dat de planeet, een hete Jupiter, een inwendige heeft van diamant en carbides, andere extreemharde koolstofverbindingen.

De ontdekking is onverwacht. De populairste bestaande planeetvormingsmodellen gaan namelijk niet uit van het bestaan van koolstofplaneten. Dit is het eerste experimentele bewijs van een controversiële theorie van astronome Jade Bond. Een koeler neefje van WASP 12B op leefbare afstand van de zon zou daarom wel eens meer weg kunnen hebben van een olieramp dan een tweede aarde. Denk dan bijvoorbeeld aan zeeën en oceanen van olie en andere koolwaterstoffen. Een warmere vorm dus van de grootste maan van Saturnus, Titan, waar er methaanmeren voorkomen.

Een koolstofplaneet kent waarschijnlijk oceanen van teer en een korst van steenkool, carbides en diamant.
Een koolstofplaneet kent waarschijnlijk oceanen van teer en een korst van steenkool, carbides en diamant.

Leven op een koolstofplaneet

In theorie is leven op een koolstofplaneet mogelijk, al zal het leven het niet makkelijk hebben. Weliswaar is koolstof geen probleem, maar water is schaars. Er zijn weinig stoffen, die de functie van water over kunnen nemen. Voedingszouten lossen niet op in olie. Op aarde komen bacteriën voor in oliereservoirs, maar deze groeien op de grens van de aardolie en het water. Deze bacteriën zetten de olie om in teer.