buitenaards leven

Een witte dwerg (midden) is veel kleiner dan de zon (rechts) maar veel heter.

‘Uitgebrande ster vormt kraamkamer leven’

Op het eerste gezicht lijken de zonnestelsels van witte dwergen, de witgloeiende resten van zonachtige sterren, niet bepaald de meest geschikte plaats om een aardachtige planeet te herbergen. Echter, schijn bedriegt, zegt astronoom Eric Agol.

Wat zijn witte dwergen?
Gedurende hun lange leven smelten sterren als de zon hun waterstof geleidelijk om tot helium, waarbij gigantische hoeveelheden energie vrijkomen: per gram waterstof voldoende voor ongeveer een eeuw elektriciteitsgebruik van een klein gezin.

Een witte dwerg (midden) is veel kleiner dan de zon (rechts) maar veel heter.
Een witte dwerg (midden) is veel kleiner dan de zon (rechts) maar veel heter.

Na enkele miljarden jaren (bij de zon: nog vijf miljard jaar, dus sluit je nog niet aan bij een doomsday sekte) is de waterstof op en vormt zich een enorme rode reus (stel je voor: de zon die de aarde opslokt), die na miljoenen jaren door een grote explosie zijn roodgloeiende mantel afstoot.

Deze vormt een vaak spectaculaire planetaire nevel, terwijl de witgloeiende kern achterblijft.

De materie in deze kern is extreem dicht en wordt elektronenvloeistof genoemd, omdat door de enorme zwaartekracht atomen niet meer bestaan en atoomkernen en elektronen door elkaar zwerven. Een theelepeltje elektronenvloeistof heeft een massa van duizend kilogram: witte dwergen zijn ongeveer zo groot als de aarde maar bevatten de massa van een ster. Ze zijn zeer heet: tienduizenden graden, maar kennen in verhouding tot hun massa een heel klein oppervlak, waardoor ze in verhouding toch weinig energie uitstralen.

De rode-reusfase met daarna de grote explosie die de stermantel wegblaast, laat voorzover we weten weinig heel van planetenstelsels. Planeten dicht bij de ster worden door de rode reus opgeslokt of drooggekookt. Planeten die dit overleven, krijgen door de  eindexplosie een stevige dreun. Kortom: niet bepaald een prettige omgeving voor leven.

De bewoonbare zone van een witte dwerg is heel klein, maar blijft wel miljarden jaren behaaglijk.
De bewoonbare zone van een witte dwerg is heel klein, maar blijft wel miljarden jaren behaaglijk.

Echter: zodra de witte dwerg zich eenmaal heeft gevormd,ontstaat een stabiele zone waarin leven zich kan ontwikkelen en die volgens berekeningen van astronoom Eric Agol van de universiteit van Washington,ongeveer drie miljard jaar in staat blijft om leven te onderhouden.

Het gaat om planeten die zeer dicht bij hun ster staan: 0,3 tot 1,5 miljoen kilometer, een honderdste AE (een AE is de afstand aarde-zon) of één tot vier keer de afstand aarde-maan.

Door de enorme getijdekrachten verliest een dergelijke planeet al snel zijn draaiing en kent hij een eeuwige dag, waarbij de zon altijd op dezelfde plaats van de hemel staat. De nachtzijde zal bedekt zijn met dikke lagen ijs. Een jaar zou een dag of zelfs maar enkele uren duren.

Astronomen op deze wereld zouden dus de bittere koude van de nachtzijde moeten trotseren en goede volgkijkers moeten bouwen.

De planeet zou volgens berekeningen van Agol ongeveer drie miljard jaar bewoonbaar blijven. Het leven op aarde is veel sneller ontstaan, dus in principe zou een dergelijke planeet leven moeten kunnen ontwikkelen. Naarmate de witte dwerg afkoelt, zal de planeet langzamerhand  bevriezen.

Agol denkt dat planeten rond een witte dwerg redelijk eenvoudig te vinden zijn, omdat witte dwergen zo groot zijn als een aardachtige planeet en dus een bedekking door een planeet de lichtintensiteit snel zal laten verminderen. Wel vereist het bestaan van een planeet zo dicht bij het hart van een voormalige ster (om een indruk te geven: als de aarde op die afstand van de zon zou staan, zou de zon een kwart van de hemel in beslag nemen) de migratie van een ver weg staande planeet die de rode-reus fase overleefd heeft.

Een uiterst zeldzame gebeurtenis, astrofysisch gesproken, maar niet onmogelijk. In ons eigen zonnestelsel verklaart het migreren van planeten volgens sommigen de merkwaardige rotatie van ijsreus Uranus.

Bronnen
ArXiv Blog
ArXiv

Zee-ijs huisvest een dichte algenmat. Zou dit ook niet voor het ijs van Jupitermaan Europa kunnen gelden? Bron: Antarctic Sun

IJsalgen manipuleren ijs

In zee-ijs bevinden zich kleine kanaaltjes zout water waarin algen en andere eencelligen leven. Naar blijkt, hebben de algen deze zelf geconstrueerd. Onder het ijs houdt zich een ingewikkeld ecosysteem op. Zouden zich op ijswerelden als Jupitermaan Europa ook dergelijke netwerken kunnen ontwikkelen?

IJsbergen huisvesten algenkolonies
Al langer was bekend dat zee-ijs kleine hoeveelheden zout water bevat. Tot voor kort werd gedacht dat de microscopische kanalen met zout water van nature in het ijs voorkomen. Dat blijkt niet het geval: de algen vormen deze kanalen door het uitscheiden van suikers die het vriespunt verlagen. Als gevolg daarvan kunnen de ijsalgen het gehalte aan kooldioxide, voedingszouten en andere essentiële stoffen in het ijs met vele tientallen procenten laten stijgen.

Zee-ijs huisvest een dichte algenmat. Zou dit ook niet voor het ijs van Jupitermaan Europa kunnen gelden? Bron: Antarctic Sun
Zee-ijs huisvest een dichte algenmat. Zou dit ook niet voor het ijs van Jupitermaan Europa kunnen gelden? Bron: Antarctic Sun

Vooral in het voorjaar, als het ijs smelt, zijn deze algen de eerste organismen die van de toegenomen hoeveelheid zonlicht gebruik kunnen maken om zich te vermenigvuldigen en zo veel zuurstof voor de zee onder het ijs te produceren, ongeveer zestig procent van de totale productie in die tijd. Aan het einde van de lange poolwinter is zuurstof zeer schaars onder water, zodat deze verse stroom zuurstof effectief het groeiseizoen start. Onder drijfijs hangen vaak lange slierten algen zoals Melosira arctica. Soortgelijke slierten koloniseren de kanaaltjes in ijs. Pas later in de lente, als het ijsoppervlak breekt en er grote stukken open water ontstaan kunnen vrijlevende algen en dergelijke de fakkel overnemen.

Als het klimaat opwarmt betekent dit waarschijnlijk dat de algen in staat zijn zich aan te passen aan andere groeiomstandigheden, zelfs het waarschijnlijk beter zullen doen en meer voedsel voor de rest van het ecosysteem produceren dan nu. Voor veel arctische ecologen is dit een opluchting.

IJswerelden
Hiermee is ook aangetoond dat ijs een minder ongastvrije omgeving is dan het lijkt. IJsrijke planeten en manen kunnen dus in principe leven herbergen, gesteld dat het leven eenmaal zich ontwikkeld heeft en in staat is om van een andere bron te leven. De lichtintensiteit (zonneconstante) op de baan van Jupiter is een dertigste van die van de aarde. Dit is de lichtintensiteit enkele tientallen meters onder water op aarde. In principe zouden algen het dus uit moeten kunnen houden in het ijs van Europa, al zullen ze dan wel hoge doses radioactieve straling moeten kunnen verdragen. Zouden algen de rode verkleuringen in de buurt van de linae op het oppervlak van Europa veroorzaken?

Bronnen
Science Daily

Eén van de door Hoover aangetroffen bacterieachtige structuren in de meteoriet.

‘Buitenaards leven ontdekt in meteoriet’

NASA-astrobioloog Richard Hoover stelt volgens het Journal of Cosmology dat hij fossielen van blauw-groene algen heeft aangetroffen in enkele koolstofmeteorieten die ouder zijn dan het zonnestelsel.
Worden zijn bevindingen bevestigd door onafhankelijk onderzoek, dan zijn de implicaties wereldschokkend te noemen. De aardse biosfeer is niet alleen: het hele universum bruist van het leven.

Fossiele bacteriën
Hoover deed zijn onderzoek aan CI1, een klasse van koolstofrijke meteorieten. Deze zijn extreem zeldzaam. Op aarde zijn in totaal slechts negen gevonden op een totaal van 35.000 meteorieten. Geen wonder: dit type meteoriet is extreem fragiel en valt in water snel uiteen. Hij bestudeerde fragmenten die uit deze meteorieten waren geprepareerd met twee typen scanning-elektronenmicroscopen: field emission (FESEM) en environmental (ESEM).
Met uiterst opmerkelijke uitkomsten. Hoover trof in de meteoriet structuren aan die als twee druppels water leken op de filamenten van aardse cyanobacteriën, ook bekend als blauw-groene algen. Cyanobacteriën behoren tot de alleroudste levensvormen en bestonden op aarde al meer dan drie miljard jaar geleden. Niet alleen de filamenten kwamen verbluffend veel overeen met hun aardse equivalenten, ook de microstructuren binnen de filamenten komen overeen met structuren die cyanobacteriën gebruiken voor dingen als voortplanting (baeocyten, akineten en hormogonia), stikstofbinding (basale, intercalaire of apicale heterocysten), hechting en voortbeweging (fimbriae).

Eén van de door Hoover aangetroffen bacterieachtige structuren in de meteoriet.
Eén van de door Hoover aangetroffen bacterieachtige structuren in de meteoriet.

Al langer is bekend dat deze klasse meteorieten uiterst rijk is aan complexe organische verbindingen, waarvan meerdere een afbraakproduct zijn van bekende biologisch actieve moleculen als chlorofyl. Ook zijn al in 1834 door de Franse chemicus Berzelius sporen van klei en andere in water gevormde mineralen aangetroffen in een van deze meteorieten, die van Orgueil. Ook uiterst opmerkelijk is dat de verdeling van aminozuren, de bouwstenen van eiwitten, in CI1 meteorieten heel anders is dan in koolwaterstofrijke koolstofmeteorieten zoals die in het Australische Murchison. Kortom: hun oorsprong is heel anders.

‘Aarde ingezaaid door kometen’
Uit de chemische analyse leidt Hoover af dat de CI1 meteorieten afkomstig zijn uit kometen. Hun verhouding tussen waterstof en deuterium (zwaar waterstof) is namelijk exact die van de zon. Ook de combinatie van water en koolstof is bekend van kometen. Recent is bevestigd dat het water in de oceanen van de aarde van kometen afkomstig is. Zo onlogisch is het dus niet om te veronderstellen dat als kometen inderdaad bacterieel leven bevatten – en het vergt heel wat fantasie om Hoovers resultaten te weerleggen – de aarde ingezaaid is door kometen. Panspermie door kometen is reeds voorspeld door de verguisde astrofysici Fred Hoyle en Chandra Wickramasinghe.  Hiermee is een ander al lang bestaand raadsel opgelost: het opmerkelijk snelle ontstaan van het leven op aarde terwijl we weten dat zelfs voor een eenvoudige bacterie heel wat complexiteit nodig is, al blijft de vraag onbeantwoord hoe het leven zich in kometen heeft kunnen ontwikkelen. Mogelijk moeten we dan aan kosmische stofwolken denken, waaruit zich uiteindelijk kometen hebben  gevormd.

Alternatieve verklaringen
Besmetting door aardse bacteriën is volgens Hoover uitgesloten, omdat hij bij het onderzoek bestaande barsten in de meteorieten heeft vermeden en uiterste zorg is betracht om hygiënisch te werken. Ook is het stikstofgehalte in zijn monsters extreem laag, vergelijkbaar met dat in gefossiliseerde resten van honderden miljoenen jaren oud. Het is uitgesloten dat in de zeer korte tijd dat de meteorieten op aarde zijn, aardse bacteriën gefossiliseerd raakten: zelfs fossiele resten van tienduizenden jaren oud bevatten nog veel stikstof. Als dergelijke gedetailleerde resten in een aardse rots waren aangetroffen, waren ze geïnterpreteerd als bacteriële fossielen.

Natuurlijk kunnen de meteorieten ook van iets anders afkomstig zijn dan een komeet. De meest voor de hand liggende verklaring is uiteraard de aarde zelf, gezien de gelijkenis met aardse bacteriesoorten. In het verleden is de aarde meerdere keren getroffen door zware asteroïden, die zeker in staat geacht kunnen worden grote hoeveelheden aards biologisch materiaal te lanceren. Mogelijk is een brok aarde na een lange reis weer teruggekeerd in de dampkring. Hier zijn de isotoopafwijkingen echter te groot voor. De waterstof/deuterium verhouding komt meer in de buurt van die van kometen.

Wetenschappelijke controverse gegarandeerd
Zowel het Journal of Cosmology als Hoover zelf wisten wat hen te wachten zou staan als ze deze uiterst controversiële uitkomsten naar buiten zouden brengen. Hoover zelf heeft gewacht met het naar buiten brengen van zijn onderzoeksresultaten tot hij na vele jaren gedegen werk het wetenschappelijke equivalent van een slam dunk had met een werkelijk overweldigende lawine aan feiten. De redacteuren van het Journal of Cosmology hebben om dezelfde reden het onderzoek voorgelegd aan honderd wetenschappers en vijfduizend andere wetenschappers om een reactie gevraagd.

Bronnen
Journal of Cosmology

Silicium-gebaseerde levensvormen maken vooral kans op hete, vrijwel koolstofloze werelden.

Levensvorm gebaseerd op silicium

Silicium is het zwaardere en minder actieve broertje van koolstof. Chemisch gedraagt silicium zich behoorlijk anders dan koolstof: kooldioxide is een gas, siliciumdioxide komt overal op aarde voor als wit zand. Plastics die bestaan uit koolstof en waterstof zijn erg brandbaar, siliconen, vergelijkbare verbindingen waarbij koolstof is vervangen door silicium, zijn juist zeer resistent tegen hoge temperaturen.

Toch hebben sommige onderzoekers het aangedurfd om te speculeren over levensvormen gebaseerd op silicium. Als koolstof uiterst schaars is en de temperaturen hoog, is leven gebaseerd op silicium duidelijk in het voordeel. Vandaar dat de onderzoekers de kans op silicium levensvormen hoger inschatten in de kern van de melkweg. Eén ding is duidelijk, als silicium-gebaseerd leven zou bestaan. Je moet veel, heel veel geduld hebben om een levensteken te ontwaren aan deze levende rotsen…

In ons melkwegstelsel komen er ongeveer vijfhonderd miljoen planeten voor in de bewoonbare zone.

500 miljoen planeten in bewoonbare zone

In ons melkwegstelsel zijn er naar schatting vijftig miljard planeten. Daarvan bevinden zich er zeker vijfhonderd miljoen in de bewoonbare zone, het gebied rond sterren waar planeten ‘leefbare’ temperaturen kunnen hebben. De schatting is afkomstig van de leider van de onderzoeksgroep van de Kepler-missie, William Borucki.

In ons melkwegstelsel komen er ongeveer vijfhonderd miljoen planeten voor in de bewoonbare zone.
In ons melkwegstelsel komen er ongeveer vijfhonderd miljoen planeten voor in de bewoonbare zone.

De planeetzoekende satelliet Kepler heeft tot nu toe een vierhonderdste deel van de hemel gescand en hierbij 1235 exoplaneten gevonden. Hiervan bevonden zich naar schatting 53 in de bewoonbare zone van hun ster.

In onze melkweg bevinden zich rond de tweehonderd tot vierhonderd miljard sterren. Er zijn dan vier tot acht maal zoveel sterren als planeten. Dit lijkt laag: alleen onze zon heeft immers al acht planeten.

Het gaat hier echter om een ondergrens, gebaseerd op de gemeten planetendichtheid van onze kosmische omgeving. Omdat Kepler alleen planeten kan vinden die vanaf de aarde gezien voor de schijf van hun moederster voorbij trekken, is de schatting mogelijk aan de lage kant. De kans is immers vrij klein dat de omloopbaan van de planeet precies tussen de ster en de aarde ligt. Het kost meer tijd om exoplaneten te vinden die verder van hun ster afliggen omdat deze langzamer bewegen.

Bevatten stofwolken buitenaards leven? We weten in ieder geval wel dat ze enorme hoeveelheden organische moleculen zoals aminozuren bevatten.

Bevatten plasmawolken protoleven?

Ons melkwegstelsel is er mee bezaaid. Enorme wolken plasma, gas zo heet dat atomen worden uiteengeslagen in ionen en elektronen. Tot voor kort werd gedacht dat plasma te chaotisch was om wat v oor structuur ook te bevatten, maar de Russische natuurkundige V.N. Tsytovitsj ontdekte met twee anderen iets opmerkelijks: stofdeeltjes die spiralen vormen die zichzelf vermenigvuldigen. En muteren…

Intelligente stofwolken en rode regen uit de ruimte
De geniale, maar nogal excentrieke astronoom Fred Hoyle schreef ook geregeld science-fiction boeken.

Chandra Wickramasinghe vermoedt dat de stofwolken tussen de sterren vol leven zijn.
Chandra Wickramasinghe vermoedt dat de stofwolken tussen de sterren vol leven zijn.

In één van die boeken, The Cloud, wordt de aarde plotsklaps omgeven door een grote stofwolk van miljoenen kilometers groot. De gevolgen voor de aarde zijn nogal vervelend: extreem hoge temperaturen en weinig licht brengen de mensheid op de rand van de afgrond. Atoombommen die op de wolk worden afgeschoten komen weer op aarde terecht.

Op een gegeven moment komt het team er achter dat de wolk levend is, zeer intelligent zelfs en af is gekomen op de radiosignalen van de aarde. Uiteindelijk slaagt een team onderzoekers er in de wolk duidelijk te maken dat hij beter een andere plek kan zoeken om zich op te laden met zonlicht.

Hoyle’s student en strijdmakker, de al even briljante en excentrieke Chandra Wickramasinghe, net als Hoyle zelf een fervent panspermist, verkondigt al jaren dat de interstellaire gas- en stofwolken leven bevatten. Volgens Wickramasinghe verklaart dat de rode regen die in 2001 in de Zuid-Indiase deelstaat Kerala optrad.  Deze standpunten (en hun ontkenning van de Big Bang) leverden ze weinig vrienden op bij hun collega’s.

Een onverwachte ontdekking van  natuurkundige Tsytovitsj en zijn collegas’s uit Duitsland en Australië maakt het domein waar leven -zou- kunnen voorkomen in één klap een stuk groter.

Ze ontdekten namelijk -met behulp van een computersimulatie- dat in stofwolken met veel geladen deeltjes door moleculaire krachten de deeltjes zich in spiraalvormige structuren gaan organiseren die wel wat weg hebben van DNA.

Bevatten stofwolken buitenaards leven? We weten in ieder geval wel dat ze enorme hoeveelheden organische moleculen zoals aminozuren bevatten.
Bevatten stofwolken buitenaards leven? We weten in ieder geval wel dat ze enorme hoeveelheden organische moleculen zoals aminozuren bevatten.

De spiraaltjes kunnen zich splitsen, kopiëren en muteren. Processen die tot nu toe uniek werden geacht voor DNA en RNA. Misschien dat zich ook grotere structuren kunnen vormen die door middel van elektrische ladingen bij elkaar blijven en met elkaar communiceren. Kortom: misschien ontwikkelt zich uiteindelijk iets als de Wolk. of een andere structuur die we ons niet kunnen voorstellen.

Uiteraard is het nog een lange weg vanaf deze spiraaltjes tot een intelligente stofwolk a la Hoyle of zelfs maar eencellige ruimteorganismen. Wel wijst Tsytovitsj op een andere interessante implicatie: bliksemontladingen als mogelijk bron van de levenbrengende spiraaltjes die vervolgens als matrijs de aanzet hebben gegeven tot de ontwikkeling van organisch leven.

Buitenaards leven zou gebaseerd kunnen zijn op silicium in plaats van koolstof, al achten wetenschappers de kans erg klein: silicium is chemisch veel weerbarstiger dan koolstof.

Wat is leven?

Zou het in theorie mogelijk zijn dat er een levensvorm bestaat, bestaande uit iets anders dan materie? Een verkenning van de mogelijkheden.

Wat is leven?
De definitie van wat leven is, wordt steeds verder opgerekt. Een aantal kenmerken duiken echter steeds weer op. Levende organismen kennen een vorm van stofwisseling (het omzetten van het ene in het andere), houden zichzelf in dezelfde toestand, kunnen groeien, kunnen zich voortplanten en kunnen zich door natuurlijke selectie aanpassen aan hun omgeving in opeenvolgende generaties: evolutie.

Hier op aarde kennen we eencelligen als archeae en bacteriën tot sequoia’s, vinvissen en alles er tussenin. Al deze levensvormen hebben gemeen dat ze uit cellen bestaan en op dezelfde biochemie van eiwit, RNA en DNA zijn gebaseerd.

Niet-organisch leven
Toch zijn dit niet alle denkbare levensvormen. Mogelijk bestaan er levensvormen die niet op de aardse biochemie maar een ander principe zijn gebaseerd.

Buitenaards leven zou gebaseerd kunnen zijn op silicium in plaats van koolstof, al achten wetenschappers de kans erg klein: silicium is chemisch veel weerbarstiger dan koolstof.
Buitenaards leven zou gebaseerd kunnen zijn op silicium in plaats van koolstof, al achten wetenschappers de kans erg klein: silicium is chemisch veel weerbarstiger dan koolstof.

 Autokatalytische verschijnselen als vuur, tinpest en kristallen, ook RNA-strengen, prionen en andere moleculen  zijn in staat zich te vermenigvuldigen. Gooi een zeer klein kristalletje natriumsulfaat (glauberzout) in een verzadigde natriumsulfaatoplossing en er vormt zich snel een enorm kristal. Sommige kristallen splitsen zichzelf tijdens het groeien in stukken die ook weer uit kunnen groeien. Er is sprake van een structurele verandering, metabolisme dus, en vermenigvuldiging. In de meeste gevallen zijn deze structuren niet in staat om te evolueren omdat ze nauwelijks informatie bevatten. In enkele gevallen (zoals RNA maar ook bepaalde mineralen zoals kleiplaatjes) zijn wel ingewikkelder structuren mogelijk. Onderzoekers testen nu bijvoorbeeld uit of bepaalde typen metaaloxiden dergelijke evoluerende structuren kunnen vormen.

Leven dat niet uit vaste materie bestaat
Computervirussen leven in een niet-organisch ecosysteem. Ook de bewoners van digitale werelden zijn in staat tot evolutie (en worden daarom vaak om die reden voor evolutieonderzoek gebruikt). Het gat hier om kunstmatige leefomgevingen, maar in principe moet ieder natuurkundig systeem waarin er entropie bestaat en op de een of andere manier informatie op kan slaan en verwerken, in principe leven kunnen herbergen, denken sommigen. Leven zou dan kunnen bestaan in sterren, op de oppervlakte van neutronensterren, als wervelwinden in de atmosfeer van een gasreus, misschien zelfs als licht dat op de een of andere manier met elkaar verknoopt is. Of Efimov-ringen. Omgevingen die te chaotisch zijn komen vermoedelijk niet in aanmerking omdat levende structuren in een fractie van een seconde uit elkaar worden gerukt.

Omgekeerd: we weten nog maar heel weinig. Misschien dat zelfs de structuur van ruimte-tijd zelf ontastbare levensvormen bevat. We weten dat op het allerdiepste niveau enorm veel complexiteit zit. Er moeten kwantumatomen bestaan ter grootte van de constante van Planck. Ons eiland van kennis wordt omringd door een oceaan van onwetendheid, en al wordt ons eiland snel groter, de oceaan is nog steeds onafzienbaar groot.

Over tweehonderd miljoen jaar ontwikkelt zich op een supercontinent een enorme woestijn, denken sommigen.

De ruimte inzaaien met bacterien

Mensen op reis naar een andere ster sturen is lastig. De afstanden zijn werkelijk enorm, ter vergelijking: de dichtstbijzijnde ster, Alfa Centauri, staat ongeveer 266 000 maal zo ver van ons af als de zon. Dus laten we bacteriën op pad sturen om het leven een handje te helpen, stellen sommigen. Geniaal of een stommiteit van werkelijk kosmische omvang?

De wieg van het leven is in gevaar
De aarde, daar zijn we zo langzamerhand wel achter, is een gevaarlijke plaats. Nog niet zo heel lang geleden in kosmische termen, ongeveer 66 miljoen jaar geleden, vaagde een asteroïde vrijwel alle dinosauriërs weg. Zelfs al slaagt de aarde er in dergelijke kosmische rampen te voorkomen, zelfs dan heeft de aarde niet het eeuwige leven.

De zon ziet er in de verre toekomst ongeveer zo uit. Voor die tijd kunnen we maar beter maken dat we wegkomen.
De zon ziet er in de verre toekomst ongeveer zo uit. Voor die tijd kunnen we maar beter maken dat we wegkomen.

Over een tot twee miljard jaar wordt deze planeet drooggekookt en verandert ze in een tweede Venus. Zelfs de taaiste organismen, zoals rotsbacteriën, zullen dan weg worden gevaagd. Als de zon na nog eens vijf miljard jaar opzwelt tot rode reus, zal ze de geblakerde aarde opslokken. Kortom: willen we dat de mensheid, of iets minder chauvinistisch, het aardse leven overleeft, dan moeten we op tijd vertrekken uit het zonnestelsel. In ieder geval tussen nu en vijf miljard jaar in de toekomst.

Eencellige astronauten
Bacteriën zijn weinig veeleisend. Ze zijn uiterst licht – een uitgesproken voordeel als hoge snelheden bereikt moeten worden -, kunnen als spore in schijndood gaan, zijn bestand tegen hoge doses straling  en zijn vaak veel minder kieskeurig dan mensen als het om voedingsbronnen gaat.

Over tweehonderd miljoen jaar ontwikkelt zich op een supercontinent een enorme woestijn, denken sommigen.
Over tweehonderd miljoen jaar ontwikkelt zich op een supercontinent een enorme woestijn, denken sommigen.

Een ruimteschip voor een bacterie, fervente SF-griezelfilm kijkers weten het, hoeft niet groter te zijn dan een paardenbloemzaadje. Je versnelt ze met een laser en in enkele tienduizenden tot honderdduizenden jaren bereiken ze een naburig zonnestelsel of gaswolk.

De filosofie van de bedenkers van dit plan, Michael Mautner en anderen van de Panspermia Society, is dat als maar enorme aantallen van deze micro-ruimteschepjes worden gelanceerd – je praat dan over vele miljarden – er enkele terecht zullen komen op het oppervlak van een exoplaneet of -wanneer ze op een protoplanetaire stofwolk worden gericht – in een leefbare omgeving op een toekomstige planeet. Hopelijk zullen ze zich dan ontwikkelen tot wezens die net zo slim zijn als de bedenker van dit plan. Pers slot van rekening is dat op aarde ook gebeurd: onze verre voorouders waren eencelligen. Carl Sagan suggereerde in 1966 dat mogelijk een buitenaards ras de aarde miljarden jaren geleden heeft ingezaaid. Dit zou verklaren waarop er zo kort na het ontstaan van de aarde leven ontstond.

Invasie uit outer space
Uiteraard zullen we op tijd weg moeten zijn van onze knusse, doch onveilige aardkloot. En beter dat de aardse biosfeer als bacterie voortleeft, dan dat de kosmos levenloos achter blijft als een welgemikte gammaflits, uit de hand gelopen kernoorlog of rampzalige wetenschappelijke proef onze planeet verandert in Ground Zero. De vraag is alleen of het zo slim is dat door middel van eencelligen te doen. Het heeft per slot van rekening meer dan vier miljard jaar geduurd voor zich uit eencelligen een denkend wezen ontwikkelde (tenzij één van de natuurrampen uit het verleden het gevolg was van een dino-kernoorlog). Kortom: we doen dan heel veel mopeite om iets te verspreiden wat hoogstwaarschijnlijk niet verder zal komen dan een plasje slijm.

Omgekeerd: als het leven minder zeldzaam is dan Mautner denkt, dan zullen intelligente aliens ongeveer net zo blij zijn met ons genereuze bacteriebombardement als de indianen met het pokkenvirus. Misschien komen ze dan op de gedachte deze biospammers een leuke zichzelf vermenigvuldigende nanobot op het lijf te sturen om ons naar steentijdniveau terug te brengen. Bij wijze van verzekeringspolis, zeg maar, om zo van toekomstige kadootjes verschoond te blijven. Ook zullen deze bacteriën muteren tot vormen die wellicht gevaarlijk zijn voor toekomstige menselijke kolonisten. Dan liever maar even wachten tot we een echt goed vervoermiddel hebben naar verre sterren voor mensen of andere denkende wezens. Het goede nieuws: we hebben een paar miljard jaar de tijd om dat te verzinnen.

Bronnen
To boldly sow: why we should fertilize the galaxy, New Scientist
To boldly sow: seeding the galaxy with earthly life, ibid.

De aminozuurverdeling in materiaal van biologische oorsprong wijkt sterk af van die in materiaal van anorganische oorsprong.

Universele chemische handtekening leven ontdekt

Leven met een aardse biochemie ontdekken is niet zo moeilijk. Er zijn bepaalde moleculen, denk aan het suikermolecuul glucose, die alleen in aardse organismen voorkomen. Maar hoe bepaal je of die veelbelovende borrelende moddervulkaan op een verre exoplaneet wordt veroorzaakt door een anorganisch proces of toch door leven met een totaal andere chemie dan dat op aarde? De Californische biochemicus Evan Dorn en zijn team vonden een methode, een chemische handtekening van het leven..

Meercellig leven op een gasreus heeft mogelijk veel weg van een ballon.

Buitenaards leven: zoeken naar een spook
Buitenaards leven kan net als het aardse leven op DNA gebaseerd zijn.
Het is alleen zeer de vraag of dat de enig denkbare mogelijkheid is. Zo is ons zonnestelsel extreem rijk aan zuurstof. Misschien dat er op andere planeten planten voorkomen die geen zuurstof uitstoten maar chloor (wat in theorie meer energie oplevert). Op zeer koude planeten komt er misschien leven voor dat niet in water zwemt maar in vloeibaar methaan of ammoniak. Misschien bestaan er levende rotsen, bestaande uit siliciumverbindingen die extreem traag leven en bewegen. Of, op een Io-achtige wereld, is zwavel het elixir van het leven.

De handtekening van het leven
Dorn en zijn team vergeleken buitenaardse bronnen van aminozuren (koolstofchondrieten, koolstofrijke meteorieten) met synthetisch geproduceerde en door aardse organismen geleverde mengsels van aminozuren. Aminozuren zijn de bouwstenen van eiwitten. Het bleek dat in de twee mengsels van anorganische oorsprong de verdeling van aminozuren exact gelijk is aan wat op grond van thermodynamische overwegingen verondersteld mag worden. Hoe meer energie het kost een bepaald aminozuur te maken, hoe minder het voorkomt. In organische mengsels wijkt de verdeling sterk af van het thermodynamisch verwachtte mengsel.

handtekening van het leven
De aminozuurverdeling is heel anders bij levende organismen, dan bij anorganisch ontstane aminozuren. Bron: [1]
Handtekening blijkt universeel

Het zou kunnen dat dit effect alleen bij leven met een aardse biochemie optreedt. Dus nam Dorn een tweede proef, deze keer met computergesimuleerd leven. Avida is een simulatiemodel waarin uit elementaire bouwstenen bestaand kunstmatig leven instructies uitvoert. Reeksen, ‘moleculen’, met de juiste instructies kunnen zichzelf kopiëren. Hierbij putten ze uit de voorraad rondzwervende bouwstenen. Dorn mat de frequenties waarin bouwstenen voorkwamen voordat en nadat evolutie was opgetreden.

De frequenties bleken na de evolutie sterk af te wijken van de ‘normale’ frequenties. Bepaalde ‘moleculen’ werden door het Avidaanse leven veel vaker opgenomen dan andere. Kortom: het lijkt hier te gaan om een universele eigenschap van leven. Leven zorgt er op de een of andere manier altijd voor dat chemicaliën in een andere verhouding voorkomen dan volgens thermodynamische berekeningen te verwachten is. Kortom: er is een duidelijek handtekening van het leven te ontdekken.

Op zoek naar planeten met leven
We kunnen nu in principe in de atmosfeer van planeten op vele lichtjaren afstand ontdekken of er leven voorkomt. We hoeven slechts te letten op de relatieve sterkte van het spectrumsignaal voor bepaalde stoffen. Wijkt deze sterk af van wat te verwachten is op een anorganische wereld, dan is dit een definitief bewijs dat deze wereld leven bevat. Of het nu om een chloor-ademende kwal gaat, een zwaveletende schimmel of toch een op koolstof gebaseerde levensvorm, de methode werkt in principe op iedere op scheikunde gebaseerde levensvorm.

Bron

ArXiv

Felisa Wolfe verzamelt monsters bij het Mono Lake.

Arsenicum-gebaseerd leven ontdekt op aarde?

Uit de volgorde van sprekers op de NASA-persconferentie is af te leiden dat waarschijnlijk het bestaan van arsenicum-gebaseerd leven op aarde wordt onthuld.

NASA kondigt een persconferentie aan aanstaande donderdag. De sprekerlijst is als volgt:

– Mary Voytek, director, Astrobiology Program, NASA Headquarters, Washington
– Felisa Wolfe-Simon, NASA astrobiology research fellow, U.S. Geological Survey, Menlo Park, Calif.
– Pamela Conrad, astrobiologist, NASA’s Goddard Space Flight Center, Greenbelt, Md.
– Steven Benner, distinguished fellow, Foundation for Applied Molecular Evolution, Gainesville, Fla.
– James Elser, professor, Arizona State University, Tempe

Dat Mary Voytek als eerste spreekt, is logisch. Zij is de directeur van het NASA astrobiologie programma.
Interessant is nummer twee, Felisa Wolfe-Simon.

Felisa Wolfe verzamelt monsters bij het Mono Lake.
Felisa Wolfe verzamelt monsters bij het Mono Lake.

Felisa doet onderzoek naar bacteriën in het arsenicumrijke Mono Lake die volgens haar in hun DNA geen op fosfor gebaseerde nucleïnezuren hebben, maar de fosfor vervangen door arsenicum. In een uitzending van VPRO Labyrint werd kort geleden al aangekondigd dat ze binnenkort met resultaten naar buiten zou komen in die richting.
Het ontdekken van een organisme op aarde dat gedijt op het voor mensen dodelijke gif arsenicum in plaats van fosfor zou een revolutie in de biologie betekenen en zeker enorme gevolgen hebben voor de zoektocht naar buitenaards leven.

UPDATE: een tweetal valsspelende Britse kranten heeft onthuld dat het inderdaad gaat om de ontdekking van een bacterie die op arseen leeft in plaats van op fosfor.

UPDATE 2:  een ander onderzoeksteam heeft de arseenbacterie voortgekweekt in een voedingsoplossing met arsenicum en heeft het DNA geanalyseerd. Zoals het er nu naar uitziet, bevat het DNA geen arseen. Toch geen leven, mede gebaseerd op arseen?