dna

Mogelijk zag Australopithecus sediba er zo uit.

Huidweefsel voorouder mens ontdekt

Paleontologen hebben bij twee skeletten gereedschap en ook stukjes gemummificeerde huid ontdekt.  Kunnen we hier DNA uit halen of zelfs onze verre voorouder Australopithecus sediba weer tot leven wekken?

Gemummificeerde huid op de botten
Paleontologen vonden twee skeletten, de overblijfselen van een vrouw met kind. Vermoedelijk is de vrouw omgekomen nadat ze in een waterbron viel. De skeletten zijn geïdentificeerd als van de mogelijke menselijke voorouder Australopithecus sediba. De Universiteit van Witwatersrand in Johannesburg (Zuid Afrika) heeft afgietsels van de twee skeletten gemaakt voor het Natural History Museum in London. Nu worden er wel vaker voor-menselijke resten gevonden. Wat deze ontdekking zeer spectaculair maakt, is de vondst van gereedschap en -vooral- gemummificeerde huid op de botten. Er is ouder gereedschap bekend,maar dit is het oudste gereedschap dat bij een skelet is gevonden.

Mogelijk zag Australopithecus sediba er zo uit.
Mogelijk zag Australopithecus sediba er zo uit.

Wieg mensheid elders  in Afrika?
De fossielen zijn gedateerd op 1,977 miljoen jaar en zijn gevonden in het Malapa grotcomplex in Zuid-Afrika. Deze vondst in Zuid-Afrika was zeer onverwacht en bracht paleontologen behoorlijk in verlegenheid. Tot nu toe zijn er alleen resten van deze mensachtigen gevonden in de nu kurkdroge Ethiopische Riftvallei en omstreken. Terwijl de eerste Homo erectus in Ethiopië leefde, leefde deze soort – die een soort missing link vormt tussen Australopithecus en ‘ons’ Homo-genus – op duizenden kilometers afstand. Klaarblijkelijk was het leefgebied van hominiden veel groter dan tot nu toe aangenomen. Ook  het geloof dat Ethiopië de wieg van de mensheid vormt, heeft nu een stevige deuk opgelopen. Dit kan, zo blijkt nu, ook heel goed in een ander deel van Afrika zijn gebeurd. Fossielen vormen zich alleen in zeer bijzondere omstandigheden, waardoor ons beeld vaak erg vertekend is.

Pleistocenic Park met oermensen?
De botten worden omgeven door een soort gemummificeerde huid. Hieruit zijn mogelijk resten DNA te isoleren – verreweg de spectaculairste mogelijkheid. Lukt dat, dan zouden we een DNA-stamboom op kunnen stellen en wellicht (afhankelijk van de compleetheid van het DNA en een totaal gebrek aan ethiek bij sommige onderzoekers) zelfs in de verdere toekomst, met behulp van aanvullend menselijk DNA, kunnen proberen de ‘missing link’ weer tot leven te wekken.

Eiwitten terugvertalen in DNA
DNA is echter niet erg stabiel vergeleken met bijvoorbeeld bepaalde eiwitten, al zijn minuscule stukjes DNA in resten van Neanderthalers gevonden. Waarschijnlijker is dus dat de huid geen DNA, maar wel resten van keratine bevat, het voornaamste eiwit in onze huid. Omdat de aminozuurvolgorde van keratine, zoals alle eiwitten, letterlijk vertaald is uit DNA, kan je aan de hand van dit keratine het gen letter voor letter min of meer terugvertalen. In de loop van honderdduizenden jaren vinden er vele puntmutaties plaats waarbij het ene aminozuur verandert in een ander aminozuur. Als we dit vergelijken met ons eigen keratinegen, weten we daarom of dit onze voorouder was of toch een uitgestorven zijtak of – altijd goed voor smeuïge stukjes in de krant – er seks tussen verschillende soorten heeft plaatsgevonden.

Bronnen
Skeleton of ancient human may yield skin – New Scientist (2011)

De oercel blijkt veel complexer te zijn geweest dan we tot nu toe dachten.

Oercel veel complexer dan gedacht

Tot voor kort dachten wetenschappers dat LUCA, de gemeenschappelijke voorouder van alle levende organismen, een zeer primitieve cel is zonder geavanceerde biochemie. Als het al een cel was. Fout.  Onze gemeenschappelijke voorouder blijkt een volwaardige bacterie-achtige cel te zijn geweest met alles er op en er aan. Nog een aanwijzing voor panspermie?

De oercel blijkt veel complexer te zijn geweest dan we tot nu toe dachten.
De oercel blijkt veel complexer te zijn geweest dan we tot nu toe dachten.

LUCA is niet alleen een Italiaanse voornaam, maar ook een afkorting voor de Last Universal Common Ancestor, de laatste gemeenschappelijke voorouder van alle leven op aarde. De oercel dus. Tot dusver was de aard van de oercel in nevelen gehuld. Veel onderzoekers speculeerden dat de gemeenschappelijke voorouder van mens, purperbacterie en zeester, een bolletje chemische soep was, in staat tot celdeling, met wat hopeloos primitieve enzymen  maar niet veel meer. Volgens sommige onderzoekers was er niet eens een cel en is deze later pas ontstaan.

Zoals wel vaker in de wetenschap, keken onderzoekers tot nu toe verkeerd. Nieuw onderzoek, gepubliceerd in het peer-reviewed Biology Direct, toont aan dat LUCA een stuk geavanceerder was dan tot nu toe gedacht, kortom ondubbelzinnig een echte, werkende cel. Hierbij bestudeerden ze een tot nu toe verwaarloosd onderdeel van levende cellen: het acidocalcisoom, een gebiedje met een hoge concentratie polyfosfaat, een type energieopslagmolecuul in cellen. Volgens de onderzoekers is dit opslaggebiedje met polyfosfaat universeel. Het komt voor bij zowel bacteriën (die geen celkern hebben), archeae (bacterieachtige eencelligen, ook geen celkern) en eukaryoten: wezens met een celkern (d.w.z. mensen en alle andere meercellige (en veel eencellige) dieren, planten en schimmels). Kortom: de gemeenschappelijke voorouder van bacteriën, archeae en ons moet dit gebiedje ook gehad hebben.

In de studie wordt de evolutionaire geschiedenis van een eiwitenzym,  vacuolar proton pyrophosphatase, of V-H+PPase, uitgeplozen. Dit enzym komt voor in de acidocalcisomen van bacteriën, archeae en eukaryoten. Een enzym bestaat uit een reeks aminozuren. Door mutaties verandert de volgorde en samenstelling van deze aminozuren. Hiervan maakten de onderzoekers gebruik door te kijken welke enzymen het meeste op elkaar lijken, en welke organismen dus het meeste met elkaar verwant zijn. Dit deden ze met honderden verschillende organismen. Hun software genereerde aan de hand van gelijkenis van het DNA een soort boomstructuur die als twee druppels water lijkt op de ’tree of life’ zoals we die kennen. Bacteriën, archaeae en eukaryoten, die samen de drie takken van de boom des levens vormen, hadden inderdaad elk een hoofdvariant van dit enzym.  Deze drie hoofdvarianten blijken echter alle een gemeenschappelijke oorsprong te hebben. De meest voor de hand liggende verklaring: de oercel LUCA beschikte al over V-H+PPase toen deze zich splitste in de voorouders voor bacteriën, archaea en eukaryoten, aldus Gustavo Caetano-Anollés, medeauteur en hoogleraar landbouwgewassen van de universiteit van Illinois. Dit is ook het enige organel voorzover bekend, dat in alle drie levensdomeinen voorkomt en dus universeel is. Als we ribosomen even buiten beschouwing laten, uiteraard.

“Deze studie doet vermoeden dat LUCA complexer was dan de eenvoudigste organismen anno nu,” aldus James Whitfield, professor entomologie van dezelfde universiteit en co-auteur. Evolutiebioloog Gold en anderen hebben al gesteld dat evolutie vaak ook degeneratie betekent. Mogelijk hebben zich uit LUCA eenvoudiger afstammelingen ontwikkeld. LUCA was dus complexer dan veel bacteriën en archeae die vandaag de dag bestaan. Een inspirerende gedachte. Een complexe voorouder die vrij snel nadat de aarde leven kon bevatten, al opdook. Hoe kan deze zo snel geëvolueerd zijn? Kortom: dit maakt het pleit voor panspermie een stuk sterker.

Bronnen:
Gustavo Caetano-Anollés et al., Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome, Biology Direct 2011

Optimisme-gen ontdekt

Wetenschappers hebben een gen ontdekt dat samenhangt met optimisme, zelfvertrouwen en het gevoel controle te hebben over je leven.

Onderzoekers van de universiteit van Californië onderzochten het DNA van 326 proefpersonen. Daarnaast lieten ze hen reageren op stellingen als: “Ik heb het gevoel dat ik even veel waard ben als anderen.” en “Ik verwacht niet dat dingen gaan zoals ik wil.” Hiermee werd hun zelfvertrouwen, controlegevoel en optimisme gemeten.

OXTR-gen
Het OXTR-gen lijkt verband te houden met deze eigenschappen. Dit gen beïnvloedt het vrijkomen van oxytocine, het ‘knuffelhormoon’ dat te maken heeft met vertrouwen en sociale vaardigheden. Er zijn twee verschillende varianten van het OXTR-gen. Mensen met de A-variant van het gen bleken gevoeliger voor stress, sociaal minder vaardig en minder geestelijk gezond.

Zonder het optimisme-gen ga je niet automatisch ongelukkig door het leven. Het ontdekte gen is slechts één van de vele factoren die invloed uitoefenen op bijvoorbeeld depressies. Ook andere factoren spelen een doorslaggevende rol, zoals opvoeding, relaties, vrienden en andere genen.

Bron: Gezonheidsnet.nl

DNA origami. De goudkogeltjes hechten zich in spiraalvorm aan DNA.

DNA-origami is doorbraak optische metamaterialen

Onzichtbaarheidsmantels, dunne lenzen die zo krachtig zijn als een complete microscoop en veel betere zonnecellen. Het zijn maar enkele voorbeelden van de toepassingen van optische metamaterialen. De fabricage is helaas lastig en duur, maar deze nieuwe ontdekking kan daar wel eens verandering in brengen.

Metamateriaal vergt lastige bewerkingen
Het eerste metamateriaal ooit werd niet ontworpen voor licht maar voor radiogolven die een veel grotere golflengte hebben, namelijk van centimeters. Dit materiaal werd gemaakt van C -vormige stukken metaal en draad en in de vorm van een honingraat  zo groot als een tafel in elkaar gesoldeerd. Weliswaar was dit veel werk, maar het kan door mensen gedaan worden. Dat komt omdat de golflengte van radiogolven zo groot is. Ook onderdelen van enkele millimeters zijn al voldoende klein om als metamateriaal te kunnen dienen. Licht is een veel grotere uitdaging. Metamaterialen die licht kunnen manipuleren, moeten structuurtjes hebben die veel kleiner zijn dan de golflengte van licht, 400 tot 700 nanometer. Dit is kleiner dan de meeste bacteriën. Voor mensen is dit onmogelijk en de nanotechnologie is ook nog niet zover dat we dit met apparaten makkelijk kunnen realiseren, anders dan op een plat vlak. Onze beste lithografische technieken – die worden gebruikt voor de nieuwste chips en processors, komen uit rond de 20 nanometer.

Lichtgolven vervormen vergt structuurtjes van enkele atomen breed
Om metamaterialen voor zichtbaar licht te ontwikkelen, moeten zelfs nog iets kleinere structuren worden ontwikkeld. We praten dan over structuren  van enkele tientallen atomen breed (een atoom heeft, afhankelijk van het type, ongeveer 0,06 tot 0,6 nanometer doorsnede). Dit is veel lastiger te realiseren, vooral als je geen oppervlak, maar een driedimensionaal metamateriaal wilt hebben. Op zich zijn de componenten makkelijk te maken via allerlei welbekende bulkprocessen uit de chemische industrie. Het probleem is ze in elkaar te passen. We hebben geen robothanden op nanoschaal. Weliswaar kunnen we atomen verslepen, bijvoorbeeld met de punt van een scanning tunneling electronenmicroscoop, maar dat is een uiterst lastig en tijdrovend karweitje. Geen wonder dus dat Harry Potter zo zuinig is op zijn onzichtbaarheidsmantel, zullen fans van de bekende boekenserie van schrijfster J.K. Rowling zeggen.

DNA origami. De goudkogeltjes hechten zich in spiraalvorm aan DNA.
DNA origami. De stukjes DNA met goudkogeltjes hechten zich automatisch aan het bijpassende DNA.

DNA-structuur zet zichzelf in elkaar
Tot nu toe. Anton Kuzyk van de technische universiteit van München en enkele collega’s hebben een manier gevonden om dit probleem te kraken. De techniek heet DNA origami en komt er op neer dat gouddeeltjes met korte stukjes enkelvoudig DNA worden bedekt. Tegelijkertijd worden de hierbij passende stukjes DNA in een grotere DNA-structuur gebouwd. Als de DNA-puzzelstukjes in elkaar vallen, worden de gouddeeltjes meegesleept en ontstaat een atomair bouwwerk dat, bij zorgvuldig ontwerp, bijna iedere gewenste vorm kan hebben.

Kuzyk en zijn collega;’s hebben dit proces gebruikt om negen nanodeeltjes goud van slechts tien nanometer doorsnede aan stukken DNA te binden. Hiermee vormden ze de treden van een wenteltrap op nanoschaal. Nog meer goed nieuws is dat het proces zelforganiserend is. In een oplossing kunnen ze werkelijk miljoenen van deze nanowenteltrappen fabriceren. Het proces is ook verrassend nauwkeurig: ongeveer tachtig procent van de trappen heeft de perfecte vorm.

In de vloeistof met een negatieve brekingsindex, links, lijkt het rietje de tegenovergestelde richting op te wijzen.
In de vloeistof met een negatieve brekingsindex, links, lijkt het rietje de tegenovergestelde richting op te wijzen.

Het gevolg is dat er een vloeistof ontstaat met de optische eigenschappen van de spiraalvormige nanodeeltjes. Lichtdeeltjes, fotonen, bestaan uit een elektrisch veld dat een magnetisch veld, loodrecht op het elektrische veld, opwekt, dat weer een nieuw elektrisch veld, tegengesteld aan het eerste, opwekt en zo voort. Fotonen lijken daardoor  om hun as te draaien. Licht dat net zo draait als de wenteltrap (gepolariseerd licht), wordt geabsorbeerd. Het wordt namelijk omgezet in plasmons, oppervlaktetrillingen in de gouddeeltjes. Licht dat juist tegen de wenteltrap in draait, ontspringt de dans. Dit effect heer circulair dichroïsme en dit is precies wat de onderzoekers waar hebben genomen. Ze kunnen het effect manipuleren door het DNA in de tegenovergestelde richting een spiraal te laten vormen en ook door een laagje zilver op de goud-nanodeeltjes aan te brengen. Dit verandert de frequentie van licht waar de spiralen gevoelig voor zijn. Dit is de eerste keer dat het iemand gelukt is op grote schaal een optisch metamateriaal te fabriceren.

De vloeistoffen kunnen zelfs in vaste stoffen worden omgezet na gebruik van (in de chemische industrie welbekende) kristallisatietechnieken. Dit is niet makkelijk, maar de eerste stappen zijn gezet. Hier zullen we nog meer van horen.

Bouwplaats waarop huizen zichzelf in elkaar zetten
Op die manier zouden materialen met een negatieve brekingsindex gemaakt kunnen worden. Als je een rietje in een vloeistof met een negatieve brekingsindex steekt, lijkt het op een vreemde manier afgesneden te zijn (rechter glas in de afbeelding). Hiermee kan je weer Potter-achtige onzichtbaarheidmantels of microscopen die in een portemonnee passen maken. Hiermee houdt het belang van de ontdekking niet op. In feite biedt deze techniek een zichzelf in elkaar zettende nanostructuur. Stel je voor: een bouwplaats waarop je elk onderdeel van een huis een bepaalde code meegeeft, waarna het zichzelf in elkaar zet. Dat is wat er hier op nanoschaal gebeurt. Hiermee zouden we het nanobouwprobleem radicaal opgelost hebben.

Bron
DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response, ArXiv.org (2011)

Wordt de gehackte glucosemeter van Lu en Xiang een reddende engel voor de in kosten exploderende gezondheidszorg?

Doorbraak: biochemisch lab op zakformaat

Glucosemeters zijn eenvoudige instrumentjes die letterlijk van levensbelang zijn voor suikerpatiënten. Hoogleraar chemie Yi Lu and postdoct Yu Xiang hebben nu een methode uitgevonden om dit eenvoudige apparaat uit te breiden tot een waar zaklaboratorium. Een uitkomst voor chronische patiënten, hulpdiensten en artsen in de derde wereld. En voor huisartsen, want de resultaten zijn in enkele seconden bekend. Denk aan de enorme voordelen voor preventie.

Wordt de gehackte glucosemeter van Lu en Xiang een reddende engel voor de in kosten exploderende gezondheidszorg?
Wordt de gehackte glucosemeter van Lu en Xiang een reddende engel voor de in kosten exploderende gezondheidszorg?

Supersnel lab dat overal is in te zetten
Stel je voor: een lab dat in staat is om binnen enkele seconden vast te stellen of een patiënt aan een bepaalde ziekte lijdt of hoeveel depleted uranium er in het drinkwater zit. Lu en Xiang lijken precies dat te hebben uitgevonden.

De voordelen van hun methode zijn: het gemakkelijke transport door het lage gewicht, lage kosten, de wereldwijde beschikbaarheid en het aan kunnen tonen van een groot aantal stoffen in medische diagnostiek en het in de gaten houden van de leefomgeving, aldus Lu. “Iedereen kan deze techniek gebruiken om een groot aantal tests uit te voeren voor chemische stoffen naar keuze, thuis of in het veld. Denk aan stofwisselingsproducten voor een gezond leven, vervuilende stoffen in het drinkwater (dit is geen overbodige luxe in Chinese industriegebieden, red.), of voedsel of stoffen die vrijkomen bij bepaalde ziektes.”

Glucosemeter gehackt met DNA
Een glucosemeter is door het enorme aantal suikerpatiënten – enkele procenten van de bevolking – wijdverspreid. Het is daarmee een van de weinige instrumenten die direct de concentratie van een stof in een oplossing kan meten. Glucosemeters reageren echter alleen op glucose. Om glucosemeters om te bouwen voor andere chemicaliën,hackten Lu en Xiang de apparaatjes met moleculaire sensors, zogeheten functionele DNA sensors.

Functionele DNA sensors gebruiken kleine stukjes DNA die zich binden aan speciale doelen. Er zijn al een aantal functionele DNA’s en RNA’s beschikbaar om een grote variëteit aan doelen  te meten. Deze sensoren zijn al in gebruik in dure labapparatuur, maar kunnen dus ook in de goedkope glucosemeters worden gebruikt.

Twee-staps detectie
De techniek werkt als volgt. De DNA-segmenten, gehecht aan magnetische deeltjes, worden gebonden aan het enzym invertase dat sucrose (tafelsuiker) omzet in glucose. De gebruiker voegt wat bloed, serum of water toe aan de functionele DNA sensor om te testen voor drugs, moleculen die op ziekte wijzen, chemische vervuiling of andere moleculen. Als het doelmolecuul bindt aan het DNA, wordt het invertase losgelaten in de oplossing. De magnetische dragerdeeltjes worden weggevangen met een magneet, waarna de invertase begint sucrose om te zetten in glucose. Deze glucose kan de glucosemeter meten.

Stoffen die al aangetoond zijn met de nieuwe methode zijn cocaïne, interferon (een stof die vrij komt bij virusinfecties), adenosine en uranium. Met deze twee-stapsmethode kunnen in principe alle moleculen worden gedetecteerd die zich aan een stuk functioneel DNA of RNA kunnen binden. De onderzoekers werken nu aan het vereenvoudigen van hun techniek, zodat deze algemener toegepast kan worden.

Bron
Pocket chemistry: DNA helps glucose meters measure more than sugar: Physorg (2011)

Neuronen kunnen ook uit DNA bestaan in plaats van uit cellen. Wel moet je héél veel geduld hebben...

‘Denkende’ DNA-soep nu een feit

Een brein bestaande uit soep? Niet bepaald een voor de hand liggende combinatie. Toch hebben onderzoekers van Caltech precies dat voor elkaar gekregen. Ze hebben een grote stap voorwaarts gezet in het scheppen van kunstmatige intelligentie. In een reageerbuis. De onderzoekers hebben een kunstmatig neuraal netwerk geschapen, bestaande uit een circuit van met elkaar reagerende moleculen. Het netwerk kan herinneringen op basis van incomplete patronen aanvullen, precies zoals ons brein ook kan.

Soep wordt brein
De Caltech onderzoekers vroegen zich af of de functies van het brein, een uiterst complex orgaan dat uit honderd miljard neuronen bestaat,  konden worden overgenomen door een soep van moleculen die door elkaar heen bewegen. In plaats van signalenuitwisseling door neuronen dus niets anders dan moleculen die door elkaar bewegen. Het antwoord op deze vraag is, zo laat het team zien, ja.

Het neurale netwerk bestond uit 112 verschillende DNA-ketens. Het chemische mengsel speelt in het experiment een bekend geheugenspelletje, waarbij het moet proberen een onbekende proefpersoon (een wetenschapper van het team) te identificeren. De onderzoekers “trainden” de soep om vier wetenschappers te leren kennen. Elke wetenschapper werd vertegenwoordigd door een specifieke, unieke set antwoorden op vier ja-nee vragen, bijvoorbeeld of de wetenschapper een Brit was.

Patroonherkenning

Neuronen kunnen ook uit DNA bestaan in plaats van uit cellen. Wel moet je héél veel geduld hebben...
Neuronen kunnen ook uit DNA bestaan in plaats van uit cellen. Wel moet je héél veel geduld hebben… Bron: Caltech

Na aan een bepaalde collega te denken, geeft een menselijke speler een incomplete verzameling antwoorden (bijvoorbeeld: de wetenschapper is geen Brit, is blond en houdt van surfen). De speler gooit dan DNA ketens in het netwerk die overeen stemmen met deze antwoorden. Het netwerk ‘zoekt’ hier de bijpassende wetenschapper bij (bijvoorbeeld een blonde Amerikaanse natuurkundige die dol is op surfen). Het netwerk bleek ook in staat, vast te stellen dat er onvoldoende informatie is om één van de wetenschappers in zijn geheugen te identificeren. Of, ook handig bij oneerlijke spelers, de menselijke speler er op te wijzen dat zijn antwoorden elkaar tegenspreken. De onderzoekers speelden dit spel met 27 verschillende manieren om de vragen te stellen (van de 81 mogelijk denkbare combinaties). De soep gaf elke keer het goede antwoord, puur door patroonherkenning.

Denkende medicijnen
De denkende soep, in wetenschappelijk termen “biochemische systemen met kunstmatige intelligentie”, kan krachtige toepassingen hebben in de geneeskunde (zie artikel DNA-computer, kopje denkende medicijnen over het onderzoek van Ehud Shapiro), scheikunde en biologisch onderzoek, aldus de onderzoekers. In de toekomst kunnen dergelijke systemen  in cellen actief worden, waarbij ze door het controleren van een aantal chemische vragen kunnen vaststellen of er bijvoorbeeld een aidsvirusdeeltje in de cel zit. Ook scheikundigen kunnen hiermee veel complexere  chemicaliën maken of molecuul voor molecuul nieuwe structuren, bijvoorbeeld nanorobots, bouwen.

Chemische neuronen
De onderzoekers bouwden hun biochemische neurale netwerk op basis van een eenvoudig model van een neuron met een lineaire drempelwaarde. Het modelneuron  krijgt inputsignalen en vermenigvuldigt ze met een positief of negatieve wegingsfactor. Alleen als de gewogen som van inputs een bepaalde drempelwaarde overschrijdt, geeft het neuron een signaal. Dit is een extreme versimpeling van werkelijke neuronen. Weliswaar geven die net als dit kunstneuron maar één signaal, maar echte neuronen kunnen ook de gevoeligheid van collega-neuronen aanpassen en dergelijke. Toch zijn deze kunstneuronen opmerkelijk levensecht. Zelfs dit kleine aantal kan al een hersenachtig gedrag vertonen.

Hoe bouwden ze dit chemische brein?
Om het DNA neurale netwerk te bouwen, gebruikten de onderzoekers een proces genamd strand-displacement cascade. Deze methode gebruikt enkele en gedeeltelijke dubbele DNA-ketens (de bekende DNA-helix). Het enkele  stuk van de dubbele DNA helix steekt uit als een staart. Als een enkele keten een dubbele keten met een ‘staart’ ontmoet,  en de DNA-basen (‘letters’) van de staart komen overeen met de DNA-basen van het loszwevende DNA, dan bindt het loszwevende deel zich aan de staart en verdrijft de dubbele keten. Het verdreven stuk DNA, de output, kan nu weer met een andere stuk DNA gaan reageren. De onderzoekers kunnen het DNA elke gewenste basevolgorde geven en ook de concentraties van elke DNA streng bepalen. Zo kunnen de wetenschappers de soep de unieke patronen ja- en nee-antwoorden aanleren die bij elk van de vier onderzoekers horen. Ze speelden wel een beetje vals. Ze runden namelijk een computersimulatie om te bepalen welke concentraties nodig waren om herinneringen in het DNA neurale netwerk te implanteren.

DNA-brein erg klein en sloom
Hoewel denkende DNA-soep dus in principe kan, is volgens de onderzoekers dit brein vrij beperkt. Meer dan veertig chemische neuronen toevoegen aan de soep is vrijwel onmogelijk, denken de onderzoekers.  Wij hebben er miljarden malen meer. Ook is het systeem erg langzaam. Het kostte acht uur om elke wetenschapper te identificeren. Ook werden de moleculen opgebruikt: na het voltooien van ‘het spel’ moet er weer een nieuw mengsel gemaakt worden. Kortom: wees dus niet bang dat als je morgen op je werk komt, er een grote pot DNA op de plaats van je stoel staat.  Een werkend denkend chemisch systeem in een petrischaaltje verwezenlijken – laat staan in een levend organisme – is een veel ingewikkelder uitdaging. Aan de andere kant, je zou je voor kunnen stellen dat je hier een chemisch systeem omheen bouwt dat na elke cyclus de chemicaliën verwijdert en ververst.

Begon het leven met denkende soep?
Bacteriën zijn opmerkelijk slim als je bedenkt dat het in feite gewoon zakjes chemicaliën zijn. Ze zijn in staat dingen waar te nemen en als antwoord bepaalde dingen te doen, bijvoorbeeld de zweepstaart laten bewegen of een bepaalde stof produceren. Al dat soms complexe gedrag komt voort uit dat zakje chemicaliën. Onderzoeker Qian denkt dat de beperkte vorm van bacteriële intelligentie hierdoor wordt veroorzaakt.

En wie weet is op die manier het eerste leven ontstaan. Samenwerkende moleculen die op een gegeven moment een membraan vormden en met RNA gingen werken. De hier eerder beschreven Voronoi cellen, een soort vloeistofblaasjes, bezitten ook een zeer eenvoudige vorm van informatieverwerkende capaciteit.

Bronnen
Lulu Qian, Erik Winfree, Jehoshua Bruck. Neural network computation with DNA strand displacement cascades. Nature, 2011
First Artificial Neural Network Created out of DNA: Molecular Soup Exhibits Brainlike Behavior, ScienceDaily(2011)

Sommigen denken dat de eerste designer baby al binnen tien jaar geboren kan worden.

Virusresistente kunstmensen op komst

Mad scientist of visionair? Church heeft een werkelijk visionair idee. En hij weet al hoe hij dat gaat verwezenlijken. Sommigen denken dat in tien jaar de eerste genetisch gemanipuleerde kunstmensen al geboren worden. Bij bacteriën is het immers ook al gelukt…

Knutselen aan het genoom nu nog lastig en duur
Op dit moment is het extreem lastig om uitgebreide veranderingen in zelfs het kleinste genoom aan te brengen. In 2010 kondigde bioloog en zakenman Craig Venter aan, dat zijn team het DNA van een bacterie had vervangen door een door Venter zelf geschreven DNA en haalde hier het toptijdschrift Science mee[1]. Zijn team stelde kleine stukjes DNA samen met een specifieke basevolgorde en voegde ze toen samen om zo een compleet bacteriegenoom te bouwen. Een ontzagwekkende prestatie, maar makkelijk was het niet: het kostte Venter 40 miljoen dollar en 400 mensjaren werk.

MAGE, een machine die de evolutie van o.a. bacteriën sterk kan versnellen en die we al eerder op Visionair beschreven, kan dit in veel minder tijd. Het recept van bedenker Church: voeg gewijzigd DNA van duizenden genen toe, run de machine voor enkele cycli en een groot deel van de cellen moet beschikken over de gewenste veranderingen. Dit kan (en is) gecontroleerd door DNA-sequencing uit te voeren.

DNA geheimschrift

Sommigen denken dat de eerste designer baby al binnen tien jaar geboren kan worden.
Sommigen denken dat de eerste designer baby al binnen tien jaar geboren kan worden.

Als dit idee werkt, kunnen hiermee enkele waarlijk visionaire (en, zoals zo vaak, uiterst omstreden) plannetjes worden uitgevoerd die op dit moment onmogelijk moeilijk in praktijk te brengen zijn. Dit is ook de reden dat hij MAGE uitvond. Zijn grote doel: het DNA van mens, dier en bacterie kunnen herschrijven zoals hij dat wil. Samen met collega Joseph Jacobson (de uitvinder van e-ink, elektronische inkt, volgens velen de opvolger van LCD schermen) kwam hij op het idee om de totale genetische code van het leven te wijzigen. Dus niet alleen het DNA zelf veranderen, nee, ook de bouwstenen van het DNA en de manier waarop DNA wordt vertaald veranderen. Als kunstmatig DNA uit andere letters bestaat dan natuurlijk DNA, kan het niet meer gelezen of veranderd worden door een natuurlijke bacterie of virus.

Ongeveer zoals een handleiding in het Japans niet erg nuttig is voor iemand die geen Japans begrijpt. Dit idee toepassen voorkomt dat genetisch gemanipuleerde organismen hun genen verspreiden in het wild, op dit moment terecht een grote angst bij tegenstanders van genetische manipulatie. En er is nog een prettige bijkomstigheid: virussen kunnen geen slachting meer aanbrengen onder genetisch gemanipuleerde bacteriën. Zodra het virus-DNA wordt vertaald,  ontstaat er een volkomen onbruikbaar eiwit. Ongeveer zoals je videocamera er uitziet als je die zelf probeert te repareren met een Japanse handleiding.

Op dit moment kost infectie met fagen (bacterievirussen) biotechbedrijven miljarden per jaar. De bacteriën in één klap virusresistent maken zou dus erg lucratief zijn. Tot er een kwaadwillige concurrent of slimme biotech-hater uiteraard een virus ontwikkelt dat deze code wel kan lezen…

Compleet virusresistent
Carr en zijn collega’s zijn al begonnen ‘overtollige’ codons (DNA-‘woorden’ die elk voor een andere aminozuur (eiwitbouwsteen) staan) te verwijderen uit het genoom van E. coli. Ze beginnen met het zeldzaamste, het stopcodon TAG. Deze stopcodons worden vervangen door een ander stopcodon, TAA. Het zal veel meer tijd kosten om alle stopcodons te verwijderen. Ook moeten de ribosomen (de eiwitfabriekjes in de cel) zo worden gemanipuleerd dat ze TAG niet meer herkennen als stopcodon. TAG kan dan worden gebruikt als code voor bijvoorbeeld een kunstmatig aminozuur dat in de natuur helemaal niet voorkomt. Hiermee zou je supereiwitten kunnen maken die bijvoorbeeld heel hitteresistent, stabiel, elektrisch geleidend of iets dergelijks zijn. Dit heeft ook als voordeel dat het onmogelijk is geworden om een nieuw gen te kopiëren naar een natuurlijk organisme. Bacterieseks, waarbij twee bacteriën DNA uitwisselen, wordt zo onmogelijk. Bacterieseks is de oorzaak dat bijvoorbeeld antibiotica-resistenties van de ene bacteriesoort naar de andere kunnen overspringen.

Wie stopt de killer-E. coli?
Er zijn potentiële gevaren aan het virusbestendig maken van organismen. Ze krijgen zo een belangrijk evolutionair voordeel. Stel dat een genetisch gemanipuleerde E. colibacterie in onze ingewanden terecht komt. De virusbestendigheid zou het organisme dan wel eens de overheersende darmbacterie kunnen maken met voor de gastheer  nogal nare gevolgen. Een oplossing is wellicht om het kunstmatige aminozuur essentieel te maken voor het organisme en tegelijkertijd er voor te zorgen dat het organisme dat niet zelf kan produceren. En als echt niets anders meer helpt, kunnen biologen virussen ontwikkelen die wél in staat zijn deze bacteriën ziek te maken.

Mens wordt virusvrij
Church denkt dat met deze techniek onze virusprobleempjes voorbij zijn. Op deze manier kan je volgens hem industriële microben, landbouwplanten en -dieren en zelfs mensen virusvrij maken. Church gebruikt MAGE nu al om menselijke stamcellijnen te modificeren. Het doel: vaststellen of bepaalde mutaties bepaalde ziekten veroorzaken. Met MAGE kan hij zeer snel deze mutaties in stamcellijnen inbrengen en er zo achter komen of die mutatie inderdaad een bepaalde ziekte veroorzaakt. Dit kan nu een miljoen maal sneller en zal een enorme stroomversnelling in het biomedisch onderzoek opleveren. In een later stadium wordt celtherapie mogelijk. Zo kunnen leverpatiënten een genetisch gemanipuleerde lever krijgen die resistent is tegen het hepatitis C-virus. Church denkt dat de meeste patiënten logischerwijs zullen kiezen voor virusresistente donororganen.

Uiteraard is dit gemakkelijker gezegd dan gedaan. Ons DNA bestaat uit bijna 3,2 miljard baseparen. Soms wordt het gewijzigde DNA op de verkeerde plek in het DNA aangebracht. In dat geval ontstaan er uiteraard vervelende gevolgen. Collega Carr denkt daarom dat het toepassen van deze techniek op mensen een bron is van gevaar. Als er eenmaal grote aantallen mensen met een virusresistente kunstlever rondlopen, denkt Church dat het een kwestie van tijd is voordat klinieken virusresistente embryo’s vervaardigen. Het veranderen van het menselijk DNA op zo’n manier dat genetische veranderingen aan kinderen worden doorgegeven is lang gezien als taboeonderwerp. Church denkt echter dat de weerstand tegen deze technieken dezelfde weg zal gaan als weerstand tegen in-vitro fertilisatie en orgaantransplantaties. Zodra mensen zien dat ze werken, zullen ze worden geaccepteerd.

Mensheid splitst in twee soorten
Ethicus Arthur Caplan, adviseur van de Amerikaanse overheid, ziet nog een essentieel ethisch bezwaar. In feite splits je de mensheid zo in twee verschillende soorten die niet met elkaar kinderen kunnen krijgen. Een toekomstige genetisch gemanipuleerde mens is zo niet in staat om zelf te beslissen met wie hij of zij kinderen wil.

Caplan denkt wel dat MAGE ethisch zuiver gebruikt kan worden om genetische ziekten te voorkomen en te genezen. Maar ook dan zijn er de nodige ethische vraagstukken. mag genetische manipulatievan mensen alleen worden gebruitk om erfelijke ziekten te voorkomen of ook om mensen te verbeteren? Wie komt in aanmerking? Welke regels moeten worden ingevoerd? Caplan denkt dat we maar beter snel kunnen beginnen hierover na te denken. Als de ontwikkelingen met dit tempo doorgaan en Church slaagt er in om hogere diersoorten te manipuleren, zou het wel eens binnen tien jaar zover kunnen zijn dat de eerste designerbaby wordt geboren. Dan maar hopen dat er niet een moordzuchtige maniak komt die met een gemanipuleerd virus de nieuwe of juist de bestaande mensensoort uit probeert te roeien. Wij kennen wel wat enge groepen die graag van de mens af willen

Bronnen
1. J. Craig Venter et al., Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome, Science (2010)
2. Editing the Genome: Scientists Unveil New Tools for Rewriting the Code of Life, ScienceDaily (2011)
3. E. coli’s genetic code has been hacked, New Scientist (2011)
4. Evolution machine: Genetic engineering on fast forward, New Scientist (2011)

springende genen vleermuis

Springende genen blijken drijvende kracht evolutie

Vergeet puntmutaties en survival of the fittest. Twee onderzoekers hebben nu aangetoond dat springende genen, stukken DNA die van de ene plek naar de andere springen, de drijvende kracht achter de evolutie zijn in sommige soorten.

Springende genen essentieel voor evolutie mens

springende genen vleermuis
Springende genen verklaren waarschijnlijk de enorme diversiteit bij vleermuizen: van nectardrinkers (hier afgebeeld) tot insekteneters, fruiteters en vampiervleermuizen. Oranje nectarvleermuis, auteur Hans Hillewaert (Wikimedia Commons), cc-by-sa-4.0

Springende genen, in het Engels jumping genes, zijn stukken DNA die naar een nieuwe plek in het genoom van een cel kunnen springen. Door deze beweging ontstaan mutaties en veranderen de erfelijke eigenschappen van de nakomelingen.  In hun laatste publicatie geven de Australische onderzoekers Greene en Oliver ongeveer honderd voorbeelden van springende genen, die genen ingrijpend wijzigden of zelfs toevoegden, met als gevolg dat welbekende primateneigenschappen zoals het zien van kleur ontstonden.

“Onderscheid kunnen maken tussen rood en groen, snellere werking van het brein, een betere voedselvoorziening voor de foetus, een actievere placenta en betere weerstand tegen infectieziekten zijn maar enkele van de evolutionaire vorderingen die door springende genen zijn veroorzaakt,” aldus een hoogleraar biomedische wetenschappen, prof. Greene. “Het is zelfs heel moeilijk om je voor te stellen hoe primaten (waaronder de mens) zich hadden kunnen ontwikkelen zoals nu, zonder jumping genes.”

Meerdere biologische raadsels opgelost

Oliver en Greene hebben de theorie verfijnd tot vier deeltheorieën die helpen verklaren waarom evolutie soms extreem snel verloopt, soms geleidelijk en soms nauwelijks.  Hun springende genentheorie helpt daarom een aantal raadsels in de biologie te ontsluieren, bijvoorbeeld de reden dat sommige soorten plotseling eensklaps opduiken in de fossielenverzameling, waarom sommige groepen organismen zeer rijk zijn in soorten en andere juist soortenarm. Als voorbeeld van een groep die makkelijk nieuwe soorten vormt, geeft Oliver vleermuizen. Vleermuizen kennen een grote populatie actieve springende genen. Inderdaad zijn er verbazingwekkend veel soorten vleermuizen: één op elke vier zoogdiersoorten is een vleermuis.

Zonder springende genen ontstaat levend fossiel

springende genen Barbara McClintock
Barbara McClintock, de ontdekster van de springende genen. Het kostte haar tientallen jaren om acceptatie van haar revolutionaire ontdekking te krijgen. Hiervoor kreeg ze in 1983 terecht de Nobelprijs biologie.

Levende fossielen, zoals de coelacanth en de tuatura-hagedis kennen nauwelijks tot helemaal geen springende genen. Ook verklaart het volgens het tweetal waarom soorten het zogeheten junk-DNA niet uit hun genoom verwijderen.

Greene en Oliver hopen dat hun collega’s de springende-genen theorie verder gaan uittesten bij andere soorten. Ze hebben pionierswerk door anderen op dit gebied – denk aan Nobelprijswinnares Barbara McClintock – samengevat en in een nieuw paradigma samengevat.

Zou de Cambrische explosie samenvallen met het ontstaan van springende genen? Zou er een bepaald mechanisme bestaan dat jumping genes activeert? En zouden de sprongen lukraak zijn, of zou er een systeem achter zitten zodat er een vorm van geleide evolutie ontstaat? Vragen waar biologen waarschijnlijk nog wel even mee zoet zullen zijn…

Bron:
Scientists present evidence for groundbreaking evolution theory, Murdoch University (2011)

Mycoplasma is een nogal nare groep bacteriën. Nu blijkt deze zelfs het Human Genome Project te hebben geïnfecteerd...

Digitaal menselijk genoom blijkt geïnfecteerd

Zelfs onze computers zijn niet meer veilig voor bacteriën. Het menselijk genoom project blijkt vervuild met mycoplasma-DNA. Dit heeft verstrekkende gevolgen.

DNA-vervuiling
Al eerder in 2011 was bekend dat een vijfde deel van de niet-menselijke genoomdatabases vervuild zijn met menselijk DNA, vermoedelijk afkomstig van de onderzoekers zelf.

Mycoplasma is een nogal nare groep bacteriën. Nu blijkt deze zelfs het Human Genome Project te hebben geïnfecteerd...
Mycoplasma is een nogal nare groep bacteriën. Nu blijkt deze zelfs het Human Genome Project te hebben geïnfecteerd...

Naar nu blijkt, is ook het menselijk genoom zelf vervuild geraakt. Bill Langdon van het Uiiversity College London en Matthew Arno van Kings College London zeggen dat ze DNA-sequenties van mycoplasma-bacteriën hebben aangetroffen in de DNA-map van het menselijk genoomproject. Mycoplasma’s behoren tot de kleinste bacteriën bekend. De organismen kunnen alleen bestaan in levende cellen van bijvoorbeeld mensen.

Deze vervuiling heeft verstrekkende gevolgen. Biotechbedrijven gebruiken de menselijk-genoom database om DNA chips te fabriceren die meten welke menselijke genen aanwezig en actief zijn. Langdon en Arno zeggen nu dat ze mycoplasma-DNA hebben aangetroffen in twee commercieel verkrijgbare DNA chips. Iedereen die deze chips gebruikt om de expressie van menselijke genen te meten meet onbewust ook de genexpressie van mycoplasmagenen.

In sommige opzichten is dit geen verrassing. “Het is algemeen bekend dat infecties met mycoplasma’s veel voorkomen in laboratoria die zich bexig houden met moleculaire biologie,” aldus Langdon en Arno.
Met enig geluk zal deze alarmerende ontdekking in het menselijk genoom de belangstelling wekken van onderzoekers.

Worden biologische organismen nu ook computervirussen?
Een zeer belangrijke vraag is uiteraard de aard van deze vorm van informatieoverdracht. Deze mycoplasmagenen zijn duidelijk succesvol in het zichzelf voortplanten in silico. Een mogelijkheid is dat we hier een volkomen nieuw terrein voor mogelijke infecties gaan zien: biologische organismen die in staat zijn zichzelf op de een of andere manier om te zetten in besmettelijke software. Al eerder beschreven we de mogelijkheid dat digitale virussen in de toekomst ook de gezondheid gaan bedreigen via mechanische implantaten.

Hier kunnen genen die zichzelf met succes vermommen als menselijk (of als andere organismen) zich verplaatsen van de ene database naar de andere? Als we dit als virtuele infectie zien, kunnen we onze borst in de nabije toekomst nat maken wat betreft virtuele evolutie.

Hoe zouden we dit probleem kunnen oplossen?
Het besmettingsniveau en de manier waarop het zich verspreidt, suggereert op het eerste gezicht dat onderzoekers de strijd om besmettingen te elimineren aan het verliezen zijn. “We vrezen dat de huidige instrumenten niet in staat zijn genen te onderscheppen die de ‘silicium barrière’ genomen hebben”, aldus de onderzoekers.

Het meest huiveringwekkend van allemaal is dat Langdon en Arno wel eens alleen het topje van de ijsberg kunnen hebben blootgelegd. “Nu we twee verdachte DNA sequenties hebben gevonden, is de kans groot dat het gepubliceerde “menselijke genoom” er meer bevat”, aldus de twee auteurs. Als virtuele infectie echt zo'[n groot probleem is als Arno en Langdon suggereren, zullen we databases met een soort antivirus software moeten uitrusten, een vorm van virtueel immuunsysteem. maar ook it zal een evolutionaire wapenwedloop starten, waarbij vooral genen die het beste in staat zijn de veiligheidseisen te omzeilen zullen overleven.

Aan de andere kant: pas nu is het probleem opgedoken en pas nu kan de tegenaanval worden ingezet. De makkelijkste manier om het menselijk DNA te zuiveren is uiteraard om de uitgangsvoorraad van wat nu bekend is als menselijk DNA, uit te breiden. Gelukkig neemt de rekensnelheid van computers en de snelheid waarmee DNA wordt geanalyseerd elk jaar extreem snel toe. In 2011 kost het ongeveer 50 000 dollar om het volledige DNA van één mens in kaart te brengen[2] en de kostprijs zakt nog steeds extreem snel. Als we van, zeg, tienduizend mensen met voorouders uit totaal verschillende delen van de wereld, het volledige genoom weten, kunnen we alle afwijkende, niet-menselijke genen er op die manier uitfilteren. Gelukkig is de kans vrij klein dat mycoplasma’s vrijwel alle mensen geïnfecteerd hebben (en zo ja, dan is dat pas echt een probleem). Het moet dus in principe mogelijk zijn alle DNA er uit te halen.

Zou het genoom van de mycoplasma-bacterie in zijn geheel in ons DNA zitten?
Er is nog een mogelijkheid waar deze onderzoekers niet aan gedacht hebben. Mogelijk zijn de mycoplasma’s in staat om stukken van hun DNA in het menselijk genoom te injecteren. Of hebben ze dat in het evolutionaire verleden gedaan. Vergeet niet dat mycoplasma’s obligate parasieten zijn. Zonder een levende gastheer kunnen deze mini-bacteriën niet overleven. Ook is het mycoplasma-DNA (M. genitalium scoort minder dan 600 000 baseparen[3]) veel kleiner dan dat van een mens, plm. 3 miljard baseparen. Een koud kunstje om dit genoom ergens in een chromosoom te verstoppen en pop, de bacterie lift mee. Vergeet ook niet dat mycoplasma’s ervan verdacht worden kanker te veroorzaken[5] en beschadigingen in chromosomen veroorzaken[6]. Wat hiermee overeen zou stemmen.

Dit zou niet uniek zijn. Veel virussen beheersen dit kunstje ook. Ongeveer acht procent van ons DNA bestaat uit virussen[4]. De plantenbacterie Agrobacterium tumefaciens, die net als mycoplasma’s in de cellen leeft (en daar bacteriekanker veroorzaakt) wordt vaak gebruikt om vreemde genen in het DNA van planten te injecteren.

En een miljard jaar leven als parasiet is lang. Erg lang. Lang genoeg om een uiterst doortrapte evolutionaire strategie te ontwikkelen…

Bronnen
1. W. B. Langdon, M. J. Arno, More Mouldy Data: Virtual Infection of the Human Genome, Arxiv.org [2011]
2. Mapping a Human Genome, via an eBay Auction, New York Times [2011]
3. Su, Chung J. en Baseman, Joel B., Genome size of Mycoplasma genitalium, Journal of Baxcteriology [1990]
4. UT Arlington genome biologist reports on surprising evolutionary discovery, University of Texas, Arlington [2011]
5. Huang S, Li JY, Wu J, Meng L, Shou CC., Mycoplasma infections and different human carcinomas, World J Gastroenterol. [2001] Apr;7(2):266-9
6. Chernova OA, Volkova EN, Chernov VM, Chromosome aberrations induced by mycoplasma infections in human peripheral blood lymphocytes, Genetika [1996]

Telomeren zijn de witte puntjes op de einden van de chromosomen, die vrijwel al ons DNA bevatten. Kunnen we veroudering stoppen door telomeren te herstellen?

Belangrijke oorzaak veroudering gevonden

Onderzoekers ontdekten een nieuw mechanisme voor veroudering. Hun onderzoek geeft inzicht in de manier waarop progerine, een giftig eiwit, te maken heeft met telomeren, de ‘beschermkapjes’ aan het einde van chromosomen. Een veel langer leven komt nu een stuk dichterbij.

Progerine vergiftigt cellen
Het onderzoek is uitgevoerd door door wetenschappers van het Amerikaanse NHGRI (National Human Genome Research Institute), een onderdeel van het National Health Institute.
Bij elke celdeling worden telomeren iets korter. Als ze bijna verdwenen zijn, stopt de cel met delen en sterft. De onderzoekers hebben ontdekt dat korte of niet werkende telomeren de productie van progerine op gang brengen, wat in verband wordt gebracht met celschade door ouderdom. Hoe korter de telomeren worden, hoe meer progerine de cellen produceren.

Progerine is een gemuteeerde vorm van lamine A, een normaal celproteïne. Dit eiwit is gecodeerd in het normale LMNA gen. Lamine A helpt de normale structuur van de celkern te onderhouden. In 2003 ontdekten onderzoekers van het NHGRI dat een mutatie in LMNA de zeer zeldzame ziekte progeria veroorzaakte. Kinderen met progeria (vroeger: Hutchinson-Gilford progeria syndroom) vertonen al op zeer jonge leeftijd ouderdomsverschijnselen, zoals verlies van haar, minder onderhuids vet, aderverkalking en vervormingen in het skelet. Deze kinderen sterven gewoonlijk aan hart- ebn vaataandoeningen in hun tienerjaren.

Onderzoek naar progeria geeft kardinale inzichten in veroudering
“Deze zeldzame ziekte verbinden met het normale verouderingsproces blijkt vruchtbaar op een belangrijke manier,” zei NIH directeur Director Francis S. Collins, M.D., Ph.D., een hoofdauteur van deze publicatie. “Deze studie laat zien dat het bestuderen van zeldzame genetische ziekten als progeria waardevolle biologische inzichten oplevert. Vanaf het begin was ons gevoel al dat progeria ons heel veel kon leren over het normale verouderingsproces en aanwijzingen kon geven over meer algemene biochemische en moleculaire mechanismen.”

Fouten in het overschrijven van DNA in RNA

Telomeren zijn de witte puntjes op de einden van de chromosomen, die vrijwel al ons DNA bevatten. Kunnen we veroudering stoppen door telomeren te herstellen?
Telomeren zijn op deze foto de witte puntjes op de einden van chromosomen. Chromosomen bevatten vrijwel al ons DNA. Kunnen we veroudering stoppen door telomeren te herstellen?

Collins leidde het onderzoek dat eerder leidde tot de ontdekking van de genetische mutatie die verantwoordelijk is voor progeria en verdere vorderingen. Zo is nu veel meer bekend over de biochemische en moleculaire oorzaken van de ziekte. In een studie in 2007 toonden de onderzoekers al aan dat cellen van normale mensen al een kleine hoeveelheid progerine produceren. Zelfs als ze niet de mutatie bij zich dragen. Hoe meer celdelingen, hoe korter de telomeren worden en hoe hoger de productie van progerine. Maar wat zorgde dat de productie van het giftige progerine op gang kwam? De oorzaak lijk te zijn dat het ‘normale eiwit’ lamine A wordt gesplitst, waardoor het giftige progerine ontstaat en hiermee alle tekenen van veroudering. Volgens het onderzoek zorgt de verkorting van telomeren bij elke celdeling er op een nog niet opgehelderde manier voor dat de RNA splitsing fout verloopt.

Telomeren worden steeds korter: de cellulaire doodsklok
RNA is een soort afschrift van het DNA, dat door een ribosoom weer letterlijk wordt vertaald in een eiwit. Als een DNA-gen in een sliert boodschapper-RNA wordt overgekopieerd, worden de stukken onzin-DNA, de introns, overgeslagen. Klaarblijkelijk verandert dit mechanisme door de kortere telomeren en beïnvloedt het de eiwitproductie voor meerdere eiwitten die de celstructuur intact houden. Vooral het messenger-RNA dat codeert voor het eiwit LMNA, waardoor het giftige eiwit progerine wordt gevormd.

Telomerase is een enzym dat telomeren kan verlengen. Zo houden cellen het vermogen om te delen. De studie laat ook zien dat cellen die voortdurend van telomerase worden voorzien, onsterfelijk worden en heel weinig progerine-RNA produceren. De meeste cellen van deze soort zijn kankercellen die continu doorgaan met delen.


Hoe word je onsterfelijk?

De onderzoekers hebben ook laboratoriumtesten uitgevoerd op normale cellen van gezonde individuen, variërend van tien tot 92 jaar oud. Onafhankelijk van leeftijd, bleken cellen die zich vaker deelden meer progerine te produceren en kortere telomeren te hebben. Omgekeerd bleken slecht werkende telomeren onveranderlijk tot meer progerine te leiden. De onderzoekers hebben ook onderzoek gedaan naar de rechtstreekse gevolgen van telomeren op de RNA-afsplitsing. Inderdaad blijkt dat RNA-afsplitsing wordt veranderd door kortere telomeren voor lamine A en een aantal andere genen die enzymen voor de celstructuur produceren. Kortom: wil je onsterfelijk worden, dan zou het wel eens slim kunnen zijn een manier te verzinnen om telomerase in te zetten om de telomeren in cellen tijdelijk te verlengen. Of cellen het signaal te geven tijdelijk telomerase te produceren. Niet permanent; je wilt voorkomen dat zich kankercellen ontwikkelen. In onze geslachtscellen gebeurt dat al. Daardoor kunnen bijvoorbeeld mannen tot op hoge leeftijd zaadcellen produceren.

Misschien dat je hiervoor omgebouwde RNA-virussen kan gebruiken. Deze virussen injecteren niet RNA om de cel mee te infecteren, maar alleen messenger-RNA voor telomerase. Als gevolg hiervan gaat de cel grote hoeveelheden telomerase produceren. Een technisch lastiger alternatief is rechtstreeks telomerase in cellen te injecteren met nanodeeltjes. Ook voor cosmeticafabrikanten is zalf die telomeraseproductie opwekt uiteraard zeer interessant. Ook kunnen enzymen worden gevormd die progerine afbreken. Misschien dat deze als preventieve maatregel in menselijke cellen kunnen worden ingebouwd. Waarschijnlijk zijn er ook andere verouderingsmechanismen, maar dit is de meest dodelijke.

Bronnen
New Clues About Aging: Genetic Splicing Mechanism Triggers Both Premature Aging Syndrome and Normal Cellular Aging, Science Daily (2011)
Kan Cao, Cecilia D. Blair, Dina A. Faddah, Julia E. Kieckhaefer, Michelle Olive, Michael R. Erdos, Elizabeth G. Nabel, Francis S. Collins. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. Journal of Clinical Investigation, 2011 (volledig artikel)