mijnbouw

Koper, een halfedelmetaal, komt heel af en toe als zuiver metaal voor, zoals hier.

Aarde houdt kopervoorraad diep onder de grond

Koper is één van de elementen met de laagste bindingsenergie per nucleon, dus is energetisch erg voordelig. Er zou dus behoorlijk wat van moeten zijn. Toch wordt het metaal steeds schaarser. De reden: de aarde houdt koperafzettingen vast op tientallen kilometers diepte.

Koper zeer schaars
De continentale korst van de aarde is zeer koperarm. Al miljarden jaren. De gevolgen zijn erg vervelend. Volgens schattingen zal over zes jaar de wereldvraag naar koper het aanbod overtreffen. Door dit onderzoek weten we nu in ieder geval waar we nieuwe kopervoorraden kunnen vinden. Opmerkelijk genoeg was het team helemaal niet op zoek naar het gedrag van koper, maar wilde weten hoe zich de continentale platen vormden (waar zo ongeveer alle land, enkele vulkanische eilanden uitgezonderd, op ligt) en de oxidatiestaat van vulkanen. Een hypothese is namelijk dat de aarde in het begin van haar bestaan nauwelijks continenten had en dat de opmars van continenten begon toen de aarde miljarden jaren geleden een zuurstofatmosfeer kreeg.

Koper, een halfedelmetaal, komt heel af en toe als zuiver metaal voor, zoals hier.
Koper, een halfedelmetaal, komt heel af en toe als zuiver metaal voor, zoals hier.

Boogmagma
In hun zoektocht naar antwoorden stuitten ze op boogmagma’s, die een essentiële rol spelen in het recyclen van continentale platen en oceanische platen. Als de ene plaat onder de andere wordt gedrukt, gebeuren er twee dingen. De smeltende, zakkende plaat brengt zuurstofrijke korst en sedimenten in de mantel: de bron voor de boogmagma. Tegelijkertijd ontstaat een hete magmastroom omhoog die de zakkende plaat doet smelten en vaak boogvulkanen oplevert: de lichte, hete magma brandt zich dan een weg door de bovenliggende korst en vormen zo nieuwe continentale plaat. Deze plaat bevat veel vluchtige stoffen zoals water en kooldioxide.  Dit is ook een logische bron voor de zuurstof, meenden de onderzoekers. Ze stuitten echter op iets heel anders.

Xenolieten
Xenolieten zijn gesteenten die zich heel diep in de aarde vormen en tijdens vulkanische uitbarstingen naar boven komen. Als magma afkoelt vormen zich doorgaans als eerste, 50 km onder de aardoppervlakte, zwavelrijke pyroxeniet xenoliet. In plaats van zuurstof vonden ze echter sulfiden, zwavelatomen gebonden aan metalen als koper, nikkel en ijzer. Chemisch gezien is zwavel het zwaardere neefje van zuurstof en in een zuurstofrijke omgeving kunnen deze niet gevormd worden (er ontstaan dan sulfaten, waar ook zuurstof deel van uitmaakt).

Zinkend kopererts
Sulfides zijn zwaar en dicht en hebben daarom de neiging omlaag te zinken. Kortom: de aarde is rijk aan koper, maar dan wel op een onbereikbare plaats, tientallen kilometers in de diepte. We weten dat er in ieder geval op enkele plekken in de wereld koperafzettingen zijn. Klaarblijkelijk bestaan er bijzondere omstandigheden waardoor koper toch naar boven komt. De oorzaak is volgens het team dat als zich steeds meer koperrijk gesteente ophoopt, het verder de diepte inzakt, waar het wordt verhit en dan weer deel gaat uitmaken van de magmaboog. Metalen als koper en goud worden uit de gesteentematrix gedrukt en lossen op in de volatielen. Als deze vluchtige bestanddelen zich door breuken in het gesteente persen en uiteindelijk verdampen, blijven koper en goud achter.

Deze condities deden zich voor in de Andes en het westen van Noord-Amerika, inderdaad rijke bronnen van kopererts. Andere mogelijkebronnen van onontdekte koperafzettingen zijn volgens de studie Siberië, Noord-China, Mongolië en delen van Australië.

En natuurlijk in asteroïden met een hoog metaalgehalte.

Bron
C.-T. A. Lee, P. Luffi, E. J. Chin, R. Bouchet, R. Dasgupta, D. M. Morton, V. Le Roux, Q.-z. Yin, D. Jin. Copper Systematics in Arc Magmas and Implications for Crust-Mantle Differentiation. Science, 2012; 336 (6077): 64 DOI: 10.1126/science.1217313

Zelfvermenigvuldigende robots op het oppervlak van Mars

Zelfreplicerende mijnrobot

In plaats van miljarden euro’s aan instrumenten de ruimte in te sturen kunnen we ook een enkele robot sturen of microbe aan de ruimte aanpassen die zichzelf kan vermenigvuldigen. Wat is er nodig,  is dit idee technisch haalbaar en wat zijn de gevaren?

Zichzelf vermenigvuldigende robotmijnwerkers
Zou het niet handig zijn om net als een boer zijn akker, de ruimte, bijvoorbeeld de asteroïdengordel, vol te kunnen zaaien en daarna te kunnen oogsten? Het is niet meer nodig om dure bemande ruimtevluchten te plannen. Sterker nog: de robotwerkers kunnen zichzelf kopiëren, waardoor er na verloop van tijd een leger van honderdduizenden nijvere robotinsecten hun metalen kaken in de asteroïden zet. Kortom: voor de kosten van een enkele ruimtemissie beschik je over een enorm productieve mijnoperatie, die voor tientallen miljarden per jaar aan waardevolle ertsen oplevert.

Dit klinkt te mooi om waar te zijn, althans op het eerste gezicht. Inderdaad zitten er aan dit idee nog de nodige haken en ogen, maar in principe is het heel goed mogelijk. Er is namelijk al behoorlijk veel onderzoek gedaan naar autonome robots die in staat zijn zichzelf te vermenigvuldigen.

Wat is er nodig?

Zelfvermenigvuldigende robots op het oppervlak van Mars
Zelfvermenigvuldigende robots op het oppervlak van Mars

In tegenstelling tot hier op aarde moet een autonome mijnwerkersrobot in staat zijn alle – of vrijwel alle – materialen die hij gebruikt zelf te fabriceren uit de grondstoffen in de omgeving. Een goede energiebron en een ertssmelter zijn dus eerste vereiste. Ook moeten uit de aanwezige grondstoffen de gewenste atomen of verbindingen kunnen worden gesorteerd. Tot slot moeten uit deze verbindingen de materialen kunnen worden vervaardigd waar de robot uit bestaat.

Dat is nog niet alles. Er mag namelijk geen kwaliteitsverlies optreden bij het kopiëren van essentiële onderdelen. Immers, als bijvoorbeeld een bepaald onderdeel een precisie heeft van een micrometer, dan zal met dit onderdeel nooit iets preciezer kunnen worden gefabriceerd dan een micrometer. Bij elke kopie ontstaat er meer speling, dus worden de kopieën elke generatie slechter. Er zal dus in de natuurkundige trukendoos moeten worden getast om dit probleem op te lossen. Met bijvoorbeeld lasers kan je dingen maken die nauwkeuriger zijn dan de onderdelen waar de laser uit bestaat. In levende wezens gaat dat goed, omdat ze op moleculair niveau werken. Atomen kunnen niet slijten.

Ook moet het ontwerp goed bestand zijn tegen energierijke kosmische straling en micrometeorieten. Dat is ook de reden waarom er in ruimtevaartuigen heel ouderwetse computers worden gebruikt. Die zijn zo grof gebouwd, dat hun werking niet al teveel verstoord wordt als een kosmisch geladen deeltje inslaat.

Zouden we al een automatische mijnwerkerrobot kunnen bouwen?
Het voornaamste probleem is voldoende intelligentie inbouwen. Asteroïden bestaan uit meerdere soorten materiaal met waarschijnlijk nog onbekende materiaalsoorten. Door de grote afstand van de aarde is tele-operatie niet of nauwelijks mogelijk. Eventueel kunnen de robots vanaf een centraal brein worden bestuurd dat dan uiteraard op aarde kan worden gefabriceerd.

Een belangrijk ander probleem is de energievoorziening. Op de maan is er heel veel zonlicht. Ook kunnen op de maan robots makkelijk worden bestuurd. Nadeel is dat de maan niet erg rijk is aan gewilde delfstoffen. Metaalasteroïden zoals Kleopatra zijn dat wel. Vele kubieke kilometers massief metaal is uiteraard de droom van iedere mijnbouwer. Het vervelende is dat metaalasteroïden zich ver van de zon bevinden. De zonneconstante, een maat voor de sterkte van het zonlicht, is in de asteroïdengordel maar ongeveer een kwart tot een zestiende zo groot als op de aarde en de maan. Misschien dat dus in een eerder stadium grote hoeveelheden zonnepanelen op de maan worden gefabriceerd en naar de asteroïden worden gestuurd. Silicium zonnepanelen kunnen van silicium en spoortjes andere elementen worden gemaakt, die op de maan net als op aarde overvloedig aanwezig zijn.

Zie ook: Mijnbouw op near-earth asteroids en Een ruimtekei als thuis

Goldrush onder de zeebodem bedreigt uniek ecosysteem

De unieke ecosystemen die zich op en rond de vulkanische schoorstenen op de zeebodem bevinden, worden ernstig bedreigd. Steeds meer mijnbouwbedrijven raken geïnteresseerd in het hoge ertsgehalte in de schoorstenen. Zal het met deze unieke diepzee-oases net zo aflopen als met de tropische regenwouden?

Schatten uit de diepzee

De spectaculaire reuzenbuiswormen worden tot twee meter lang en komen alleen in en op onderzeese hydrothermische schoorstenen voor. Bron: NOAA, Galapagos Rift Expedition 2011, public domain

In de jaren tachtig deden diepzeeonderzoekers een spectaculaire ontdekking: een ecosysteem dat niet van zonlicht leeft, maar van vulkanische processen. Het ecosysteem is geclusterd rond de zwarte schoorstenen, afzettingen van vulkanische mineralen die in het koude oceaanwater neerslaan. Op en rond deze plekken komen unieke diersoorten voor, zoals enorme buiswormen van twee meter lang, garnalen en zelfs een octopussoort. Uniek is dat deze dieren niet afhankelijk zijn van zonlicht, maar van chemotrofe bacteriën, die leven van het waterstofsulfide en andere verbindingen in het water uit de vulkanische schoorsteen. Zowel de bacteriën als de dieren uit dit unieke ecosysteem hebben zich aangepast aan de extreme temperaturen en chemische omstandigheden.

Onderzeese hydrothermale bronnen vaak extreem rijk aan metaalafzettingen
Vulkanisme is de belangrijkste bron van waardevolle ertsen. Ook “black smokers” zijn geen uitzondering. De schoorstenen van neergeslagen metaalsulfides bevatten een erg hoge concentratie  metalen – tot 6,8 procent koper, bijvoorbeeld. Ter vergelijking: de concentratie in het gemiddelde kopererts op dit moment is ongeveer 0,6 procent. Dit metaal kan dus veel energiezuiniger (en dus goedkoper) worden gewonnen dan uit erts dat op dit moment beschikbaar is. Geen wonder dus dat de mijngiganten begerig kijken naar black smokers. Deze voorzien in een zeer gemakkelijk te winnen bron van delfstoffen.In feite zijn sulfide-ertsen afkomstig van gefossiliseerde onderzeese vulkanische bronnen…

Mijnbouw bedreigt uniek ecosysteem
Er is één wettelijk probleem. De zeebodem is voor het grootste deel van niemand. Een VN-orgaan, de International Seabed Authority, beoordeeelt de aanvragen. En inderdaad hebben  mijnbedrijven nu massaal aanvragen ingediend voor het afgraven van onderzeese schoorstenen in de Stille Oceaan, Atlantische Oceaan en de Indische Oceaan. De eerste mijnoperaties moeten in 2012 beginnen.

Onderzoekers maken zich hier de nodige zorgen over. Diepzee-ecosystemen zijn erg fragiel. Dit geldt ook voor diepzeebronnen. Zelfs het felle licht van onderzoeksschepen bleek al desastreuze gevolgen te hebben voor de fauna in en rond de zwarte schoorstenen. De gevolgen van een mijnoperatie zullen uiteraard eens zo ernstig zijn.gelukkig is er ook goed nieuws. Naar schatting zijn slechts ongeveer een procent van alle bronnen interessant voor mijnbouwbedrijven. Dit percentage kan echter omhoog gaan als de prijzen voor koper en goud op de wereldmarkt verder gaan stijgen.

Mijnbouw bij dode bronnen
Er is echter een oplossing. Op een gegeven moment stokt de uitstoot van een vulkanische bron. Het ecosysteem er omheen sterft dan af. De dieren hebben tegen die tijd uiteraard al heel veel larven geproduceerd, waarvan er enkele een nieuwe vulkanische bron kunnen koloniseren. Het goede nieuws is, dat de minerale afzettingen zich nog steeds op de zeebodem bevinden. Deze kunnen zonder al teveel schade aan het ecosysteem gewonnen worden. Er is alleen een probleem. Actieve vulkanische bronnen zijn makkelijk te lokaliseren. Is de bron eenmaal stilgevallen, dan is dit veel lastiger. Vandaar dat mijnbouwbedrijven vooral actieve vulkanische bronnen op de korrel hebben. Maar is het niet veel slimmer om in vulkanische gebieden met bijvoorbeeld robotsondes op zoek te gaan naar stilgevallen schoorstenen?

Bron
New Scientist

NASA stelt zich asteroïdemijnbouw ongeveer zo voor.

Mijnbouw op near-earth asteroids

Near-earth asteroids zijn vooral bekend van de akelige gevolgen die inslag van zo’n ruimtekei op onze aarde heeft. Veel near-earth objects zijn echter ook rijk aan interessante metalen. Welke ruimtekeien zijn het lucratiefst voor mijnbouw?

Ruimtemijnen
Asteroïden zijn in veel opzichten ideaal voor mijnbouw. Sommige asteroïden bestaan bijna geheel uit massief metaal. De zwaartekracht is zeer laag, waardoor de ertsen makkelijk zijn te transporteren. De asteroïdengordel ligt ver weg van de aarde, waardoor mijnbouw in de asteroïdengordel moeilijk is. Een aantal asteroïden bevindt zich echter vlak bij de aarde. Bij ruimtevaart kost zowel versnellen als vertragen veel brandstof. De benodigde snelheidsverandering om hier te komen vanaf de aarde is veel kleiner, wat ze interessant maakt voor mijnbouw.

Asteroid prospecting

NASA stelt zich asteroïdemijnbouw ongeveer zo voor.
NASA stelt zich asteroïdemijnbouw ongeveer zo voor.

Martin Elvis van het Harvard-Smithsonian Center voor Astrophysics in Cambridge, Masachusetts en een aantal van zijn collega’s onderzochten welke near-earth ruimtekeien het beste in aanmerking komen voor ruimtemijnbouw.

Dit is geen eenvoudige taak. Er zijn ongeveer 100 000 near-earth objects, waarbij van zesduizend redelijk veel details bekend zijn. Door te kiezen voor de asteroïden die het gemakkelijkst te bereiken zijn, kan behoorlijk op brandstof worden bespaard: er kan dan twee tot drie keer meer aan nuttige lading mee met een chemische raket. De zes asteroïden die het gemakkelijkste vanaf de aarde zijn te bereiken zijn helaas niet erg helder(1). Dat betekent dat het om zeer kleine blokken moet gaan, misschien zo groot als een huis. Het ruimteschip zou dan wel eens groter kunnen zijn dan de asteroïde die het doel is van de expeditie. Geen goudmijn dus. Uiteraard is het het interessantst, voor de komende Amerikaanse asteroïde-expeditie, gepland in 2025, een asteroïde te kiezen die voor mijnbouw interessant is. Dat betekent: metaalrijk en groter dan een kilometer.

Onder de near-earth asteroids zijn er vijfhonderd tot duizend objecten van meer dan een kilometer groot (2). Het ontginnen van een metaalachtige near-earth asteroid van meer dan een kilometer groot (ongeveer tien procent van alle asteroïden behoort tot de metaalrijke M-klasse) zou honderden miljarden euro’s aan metalen opbrengen. In theorie. Je zou de mijnbouwapparatuur aan kunnen drijven met zonne-energie, want die is overvloedig aanwezig in de ruimte op een aardachtige afstand van de zon.

Hoe breng je het metaal naar de aarde?
Uiteraard is het een pittige technische uitdaging om al dit metaal tegen lage kosten op aarde terecht te laten komen. Een te hoge snelheid zal het metaal laten opbranden in de atmosfeer. Wellicht zou je het metaal kunnen  laten smelten door middel van zonne-energie, door het vloeibare metaal snel rond te laten draaien te veranderen in een schijf en laten remmen op het aardmagnetisch veld (als elektrische geleiders in een magnetisch veld bewegen, ontstaan kringstromen). Een andere oplossing kan zijn, grote brokken gecontroleerd in te laten slaan in een weinig gebruikt en ecologisch niet erg gevoelig gebied van de oceaan.

Zie ook: Kolonisatie van de asteroïdengordel en Buitenaardse beschavingen opsporen met behulp van ruimtepuin

Bronnen
1. Elvis, Martin en McDowell, Jonathan, Ultra-Low Delta-v Objects and the Human Exploration of Asteroids, Arxiv.org (2011)
2. Rabinovitz et al., A reduced estimate of the number of kilometre-sized near-Earth asteroids, Nature (2000)

Foto van ruimtetelescoop Hubble van de dwergplaneet Ceres, het grootste object in de planetoïdengordel. Waar komt die merkwaardige witte vlek vandaan?

Een ruimtekei als thuis

De planetoïdengordel is een ring van brokstukken rots en ijs tussen de planeten Mars en Jupiter. Door de sterke zwaartekracht van Jupiter heeft zich hier nooit een grote planeet kunnen vormen. Pas in 1802 werd het eerste object in de planetoïdengordel, de ongeregelde ijsbal 1 Ceres, ontdekt.
De planetoïdengordel is vermoedelijk zeer rijk aan metalen en andere interessante materialen voor mijnbouw. Alhoewel de totale massa gering is, is het totale oppervlak enorm en is er geen atmosfeer, zodat mijnbouw veel makkelijker is dan op aardachtige planeten. Eindelijk een einde aan de burgeroorlog in Kongo en rampzalige dagmijnbouw?

Planetoïdengordel factsheet

Grootte: miljoenen fragmenten ijs, gesteente en metaal variërend van meer dan 900 km doorsnede (Ceres) tot enkele meters en kleiner

Zwaartekracht: 2,8% van de aarde (Ceres) tot vrijwel nul

Atmosfeer: vrijwel geen; zonnewind

Temperaturen: -108 graden tot -173 graden C (gemiddeld; grote temperatuurvariaties dag en nacht)

Daglengte: varieert per asteroïde

Lengte jaar: rond de 4,6 jaar

Waardevolle grondstoffen: metalen, waterijs, silicaten

Pluspunten: rijkdom aan grondstoffen, lage zwaartekracht, vacuüm, geologisch stabiel

Gevaren: kosmische straling, meteorieten, weinig zonne-energie, botontkalking door lage zwaartekracht

De omgeving

Ingeklemd tussen Mars en Jupiter is de planetoïdengordel een brede puinring bestaande uit haast ontelbaar veel brokken.

Foto van ruimtetelescoop Hubble van de dwergplaneet Ceres, het grootste object in de planetoïdengordel. Waar komt die merkwaardige witte vlek vandaan?
Foto van ruimtetelescoop Hubble van de dwergplaneet Ceres, het grootste object in de planetoïdengordel. Waar komt die merkwaardige witte vlek vandaan?

De grootste asteroïde, 1 Ceres, heeft een bolvorm en wordt daarom nu beschouwd als een dwergplaneet. De overige asteroïden, waarvan de grootste 2 Pallas, 4 Vesta en 10 Hygeia zijn, zijn te klein om tot een volmaakte bolvorm samen te trekken en hebben een onregelmatige vorm. Omdat de planetoïdengordel enorm groot is, bestaat deze voornamelijk uit eindeloos veel leegte waar de ruimterotsen doorheen zweven.

 

Hoe kom je er?

Het grootste probleem is het overwinnen van de zwaartekrachtspotentiaal van de aarde. In feite zijn de planetoïden met minder energie te bereiken vanaf de maan of Mars dan het kost om van de aarde naar de maan te gaan. De afstand is groot, waardoor robotverkenners jaren onderweg zijn. Als minder zuinig wordt omgesprongen met brandstof zijn binnen een tot twee jaar reizen de meeste locaties in de asteroïdengordel te bereiken.

Hoe bewoonbaar is de planetoïdengordel?

Een ruimtepak onder druk, bescherming tegen de felle zonnewind en kosmische straling zijn absoluut vereist. Zonder ruimtepak houdt een mens het ongeveer een minuut uit. Vermoed wordt dat op enkele van de grootste asteroïden grote hoeveelheden water en ijs voorkomen – volgens sommige optimisten is de hoeveelheid water op Ceres zelfs groter dan de zoetwatervoorraad op aarde. Helaas is de zwaartekracht op Ceres veel te laag.

De metaalasteroïde Kleopatra lijkt nog het meest op een kluif. Ook dit kleinere zusje van Psyche is zeer rijk aan schaarse metalen.
De metaalasteroïde Kleopatra lijkt nog het meest op een hondenkluif. Ook dit kleinere zusje van Psyche is zeer rijk aan schaarse metalen.

Wat zijn de voordelen ?

 

De planetoïdengordel bevat naar we denken een grote hoeveelheid grondstoffen die met relatief weinig moeite zijn te winnen. De grootste metaalrijke asteroïde, de 200 km grote rots 16 Psyche, bestaat voor een groot deel uit puur ijzer en nikkel, klaar om te verwerken, in totaal 1.7×10^19 kg nikkelijzer. Dat is genoeg nikkel en ijzer om elke aardbewoner aan 2,4 miljoen ton metaal te helpen. Ter illustratie: Dat is meer metaal dan in twintig Nimitzklasse (de grootste ooit gebouwd) vliegdekschepen zit. En dan hebben we het nog niet eens over de grote hoeveelheden goud, rhodium en andere schaarse metalen waar nu ploeterende stakkers in het regenwoud riviertjes (en zichzelf) voor vergiftigen met dodelijk kwik. Kortom: één enkele winstgevende mining operation op Psyche en het is eindelijk afgelopen met de afschuwelijke burgeroorlog in Kongo, verwoestende dagmijnbouw in de VS en vergiftigde modderlawines in Hongarije.

De grote afstand tot de zon en de aarde maken het een minder geschikte plaats voor ruimtestations of ruimtekolonies – tenzij die worden aangedreven met kernenergie. Vermoedelijk is er ook zeer veel uranium en ander splijtbaar materiaal aanwezig op Psyche en soortgelijke planetoïden, dus dat is goed uitvoerbaar.

Gevaren in de planetoïdengordel

De planetoïdengordel is dicht bezaaid met ruimtepuin en kent geen beschermend magnetisch veld of atmosfeer. Gelukkig roteren vrijwel alle planetoïden in dezelfde richting om de zon waardoor het gevaar van micrometeorieten iets kleiner is dan anders. Micrometeorieten hebben een grotere bewegingsenergie dan kogels. Kent je ruimtepak of ruimtestation een lek en kan je dat niet dichten, dan ben je ten dode opgeschreven. Kortom: mijnstations kunnen maar beter beschikken over een stevige beschermlaag.

Hoe zou een kolonie op een asteroïde er uit zien?

Een asteroïde-mijnstation, volgens NASA
Een asteroïde-mijnstation, volgens NASA

Door het vrijwel volledig ontbreken van een atmosfeer moeten kolonies op asteroïden luchtdicht afgesloten zijn en een dikke beschermlaag kennen tegen kosmische straling en micriometeorieten.
Het menselijk lichaam reageert slecht op lange periodes in een lage-zwaartekrachtsomgeving.

De goedkoopste oplossing is de tactiek van onze verre voorouders in de IJstijd te volgen: grotten bewonen. Het recept: hol een asteroïde helemaal uit (bijvoorbeeld ten behoeve van mijnbouw), stoffeer het ding knus met aarde, rivieren en meren, pomp er een zuurstofrijke atmosfeer in en laat het ding snel genoeg om zijn as tollen om kunstmatige zwaartekracht op te wekken. En oh ja, zorg voor voldoende verlichting. Een kunstzon in het nulzwaartekrachtsgebied in het midden, bijvoorbeeld, want van het magere zonnetje voorbij Mars word je niet bruin.

Tot we er in geslaagd zijn een planetoïde uit te hollen, zullen we genoegen moeten nemen met een krappe behuizing zo groot als een bouwkeet. Of de asteroïdengordel door robots laten ontginnen.

Een uitgeholde asteroïde. Met een dergelijk enorm ruimteschip zou je duizenden, zo niet tienduizenden jaren onderweg kunnen zijn naar een naburige ster. Over de energiekosten gaan we het niet hebben...
Een uitgeholde asteroïde. Met een dergelijk enorm ruimteschip zou je duizenden, zo niet tienduizenden jaren onderweg kunnen zijn naar een naburige ster. Over de energiekosten gaan we het niet hebben…

Hoe zijn planetoïden tot leefbare wereld om te bouwen?

Niet. De zwaartekracht zelfs van de grootste planetoïde Ceres is veel te laag en het zonlicht te zwak. De enige optie die enigszins in de buurt komt, is een planetoïde uithollen en rond laten tollen, zie voor.

Er zijn plannen gesmeed om de grootste planetoïde, Ceres, te koloniseren. Deze dwergplaneet bestaat voor een deel uit waterijs.

De plannen zijn, dat kan je wel stellen, opmerkelijk. Kunstmatige zwaartekracht wordt in de plannen bijvoorbeeld opgewekt door de kolonisten ’s nachts te huisvesten in een enorm wiel dat in de dwergplaneet is ingegraven. Overdag kunnen de kolonisten hun ding doen in een enorme overdekte koepel – bijvoorbeeld schaduwminnende planten kweken bij een tiende van de aardse hoeveelheid zonlicht. De operatie moet worden bekostigd door stukken asteroïdeoppervlak bij opbod te verkopen. Het hele dwergplaneetje heeft een oppervlakte zo groot als Argentinië.