Visionaire projecten

StarTram: tram naar de sterren

Met een nieuw, visionair plan willen enkele ruimtewetenschappers de ruimte definitef openleggen. De meest uitgebreide versie van Startram kan zelfs mensen voor de kosten van een rond-de-wereld ticket in low earth orbit brengen.

StarTram, een soort rail gun?

Het voorgestelde lanceersysteem Startram werkt niet met raketten of raketbrandstof, maar door elektromagnetische aandrijving. Elektromagneten versnellen een gemagnetiseerde drager op rails en lanceren de lading uiteindelijk in de stratosfeer. Er zijn al veel plannen ontwikkeld voor een magnetische accelerator, zowel in science fiction als op NASA-tekentafels, maar tot nu toe is geen het laboratoriumstadium voorbij gekomen.

StarTram
StarTram in actie. Bron: StarTram

Volgens de bedenkers van Startram heeft hun geesteskind wel kans van slagen. Startram maakt gebruik van nu al verkrijgbare technologie en is volgens de bedenkers commercieel haalbaar. Dus zou in principe gebouwd kunnen worden. Een van de ontwikkelaars is dr. James Powell, mede-uitvinder van supergeleidende maglev treinen. Mede-initiatiefnemer dr. George Maise, een ruimtevaartingenieur die hiervoor aan Brookhaven National Laboratories verbonden was, heeft voldoende ervaring om dit idee in praktijk te brengen.

Alleen vracht voor 20, of ook passagiers voor 60 miljard

De bedenkers hebben twee verschillende modellen voorgesteld: een versie die alleen vracht kan vervoeren (Generation 1). Dit model kost ongeveer 20 miljard dollar (plm. 16,3 miljard euro, zeg maar een klein bankreddinkje a la ABN Amro) en tien jaar om te bouwen. Deze versie kan tegen een hoge berg gebouwd.

De krachtiger passagiersversie, Generation 2, zou rond de 60 miljard dollar kosten (plm. 47 miljard euro, een achtste van wat er in Afghanistan doorheen is gedraaid om de Afghanen te “bevrijden” van zichzelf). Deze uitgebreidere versie kan in rond de 20 jaar voltooid worden. De Generation 2 is maar liefst 1609 km lang en reikt tot een hoogte van 20 km in de stratosfeer. De lancering werkt door miljoenen ampères stroom door zowel  supergeleidende kabels op de grond, als door een kabel boven de buis te sturen. Deze (in tegengestelde richtingen bewegende) stromen stoten elkaar vervolgens af, waardoor  de buis blijft zweven.

Door de enorme lengte kunnen passagiers na een geleidelijke versnelling een snelheid van 9 km/s bereiken zonder door dodelijke g-krachten tot moes te zijn gedrukt. Bij deze enorme snelheden is de luchtweerstand enorm. Vandaar dat de elektromagnetische versnelling plaats vindt in een luchtledige buis.

Enorme kostenbesparing

StarTram
Het werkingsprincipe van de zwevende buis. Twee enorm sterke elektrische stromen stoten elkaar af.

Beide uitvinders wijzen er op dat lanceren via een Startram-achtig systeem vele malen goedkoper is dan lanceren met een raket. Een kilogram lading in low earth orbit brengen kost nu rond de tienduizend dollar. Met de Startram zou dit slechts vijftig dollar kosten, waarvan slechts een procent energiekosten. Ruimtereizigers naar het internationale ruimtestation ISS kunnen hun ticketkosten drukken van 20 miljoen tot vijfduizend dollar.

Is StarTram een realistisch plan?

Onderzoekers van Sandia National Laboratories hebben het plan doorgerekend, op zoek naar fouten, maar hebben geen ernstige gebreken in de opzet kunnen vinden. De voornaamste technische uitdaging is opschalen van bestaande systemen. Voor zowel de tunnel als de ruimtevaartuigen is een supergeleidende niobium legering nodig, die wordt gekoeld tot 4 kelvin. Dit is zeer koud, deze temperatuur van 4 graden boven het absolute nulpunt komt alleen binnen bereik met het zeer schaarse helium.

Dit plan zou inderdaad de ruimte open kunnen leggen en plannen om asteroïden te ontginnen of andere planeten te koloniseren realistisch maken. Zwakke punten zijn m.i. de zeer sterke magnetische velden die op worden gewekt. Dit kan de vlucht van trekvogels, alsmede de vele andere wezens  die gevoelig zijn voor magnetisme, ontregelen. En ook de krankzinnig grote hoeveelheden helium die nodig zullen zijn.

Aan de andere kant, hiermee kunnen we wel dat helium gewoon uit de ruimte halen. Want planeten als Jupiter bestaan er voor een groot deel uit. Wat denken jullie?

Verder lezen

Bron: 

Website – StarTram

Kerncentrales op zee kunnen snel gerealiseerd worden

Kernenergie is een klimaat vriendelijk alternatief voor kolencentrales. Kerncentrales op zee kunnen ook snel in gebruik worden genomen.

Kernenergie, betrouwbaar en compact

Vergelijken met zonne-energie en windenergie heeft kernenergie enkele grote voordelen. Het voornaamste voordeel van kernenergie is dat dit altijd beschikbaar is. Zomer en winter, dag en nacht. Zonnig weer of ijzige winterstorm. Dat is met zonne-energie en windenergie maar afwachten. Een ander groot voordeel van kernenergie is dat het maar weinig ruimte in beslag neemt. Vergelijk een windmolenpark of een zonneweide maar met een kerncentrale die een gelijk vermogen levert. Een ander voordeel is de geringe hoeveelheid afval. Zowel een zonneweide als vooral windmolens leveren enorm veel afval op, dat heel moeilijk is te hergebruiken. Ter vergelijking: alle afval van de kerncentrale in Borssele kan worden opgeslagen in een enkele grote schuur.

Afvalprobleem is te overzien

Kernenergie heeft twee grote nadelen. Ten eerste is dat het afvalprobleem, ten tweede het gevaar op een kernramp. Het afvalprobleem wordt in feite behoorlijk overschat. De hoeveelheid hoog radioactief afval die vrijkomt is maar klein. Om een indruk te geven, de kerncentrale in Borssele produceert per jaar ongeveer drie kubieke meter kernafval. Hiervoor in ruil levert de centrale 3,3 miljard kWh per jaar. Ter vergelijking: een kolencentrale produceert per kilowattuur 358 g kooldioxide. Als Borssele vervangen zal worden door een kolencentrale zou dat dus meer dan 1 miljard kg extra CO2 opleveren.

Omgekeerd, als in 2019 alle vijf steenkoolcentrales in Nederland vervangen zouden worden door kerncentrales, zou dat 17  miljard kWh * 358 g = rond 6 miljard kg uitstoot van kooldioxide hebben bespaard. Omgerekend is dat ruim 3% van de totale Nederlandse uitstoot. Als we trouwens ook het complete Nederlandse wagenpark van stroom zouden voorzien, in plaats van, zoals nu, van benzine en diesel, en ook de industrie, zou dit de Nederlandse CO2-uitstoot meer dan halveren. Dit, zomer en winter, 24 uur per dag. Als we een kerncentrale in het Westland zouden plaatsen, kan deze de tuinders van gratis warmte voorzien.

Risico’s van kerncentrales op zee zijn beperkt

De twee grote kernrampen, Tsjernobyl en Fukushima, deden zich voor bij verouderde, onveilige centrales. De oude reactor in Fukushima had al jaren eerder dicht gemoeten. Tot overmaat van ramp bouwde het corrupte Japanse bedrijf Tepco de centrale in Fukushima ook nog op een onveilige plaats, waar veel aardbevingen en tsunami’s voorkomen. Moderne reactoren zijn veel veiliger.

De voornaamste reden dat kernenergie niet massaal wordt uitgerold is emotioneel. Kernrampen als Tsjernobyl en Fukushima waren heel veel in de publiciteit. Toch zijn hierbij in verhouding heel weinig doden gevallen. In Tsjernobyl zijn als gevolg van straling hooguit enkele tientallen doden gevallen. In Fukushima welgeteld één. Ter vergelijking, er vallen per biljoen: kilowattuur door de mijnbouw en vervuiling rond de 100.000 doden als gevolg van het gebruik van steenkool [2]. Omdat deze doden verspreid over het jaar vallen, en wij het normaal vinden dat mensen met longkanker in het ziekenhuis liggen, maakt bijna niemand hier een punt van.

Kerncentrales op zee voorkomen rechtszaken van omwonenden

Vanwege deze emotionele bezwaren is het heel moeilijk om nieuwe kerncentrales te bouwen. Omwonenden spannen eindeloze rechtszaken aan, waardoor het tientallen jaren duurt voordat er eindelijk een kerncentrale kan worden gebouwd. Zoveel tijd hebben we niet.

Rosatom ontwikkelde deze kerncentrale op zee in zeven jaar. Rosatom kan deze centrales in enkele jaren leveren. De oplossing? Bron/copyright: rosatom.ru
Rosatom ontwikkelde deze kerncentrale op zee in zeven jaar. Rosatom kan deze centrales in enkele jaren leveren. De oplossing? Bron/copyright: rosatom.ru[1]/fair use

Drijvende kerncentrales op zee kunnen heel snel aanmeren

Zoals gezegd, zijn windmolenparken een ramp voor het milieu. Bijvoorbeeld, door de vogels die ze doden. De wieken van versleten windmolens zijn heel moeilijk te recyclen. Tot overmaat van ramp is de winning van de zeldzame aardmetalen, die nodig zijn voor de permanente magneten in windmolens, zeer milieuvervuilend. Daar hebben wij niet veel last van, maar de Chinezen die in de omgeving van deze mijnbouw leven, des te meer. Maar we kunnen toch plezier hebben van de dure infrastructuur die voor deze windmolenparken is aangelegd. Namelijk, door schepen met kerncentrales aan boord aan te meren en aan te koppelen in deze windmolenparken.

Zonne-energie een prima idee, maar dan op de daken van woonhuizen

Zonnepanelen zijn prima. Niet in zonneweides, maar op de daken van huizen van particulieren, natuurlijk. Deze kunnen prima de airconditioning van energie voorzien in de zomer. De populariteit van airconditioning stijgt snel. Door de klimaatverandering komen hoge temperaturen in de zomer immers steeds vaker voor. Zonnepanelen kunnen deze piek in de behoefte aan elektriciteit in de zomer prima opvangen.

Bronnen

  1. The floating NPP has delivered its first 10 mln kWh of electric power to the Chukotka grid, Rosatom.ru, 2020
  2. Mortality rate worldwide in 2012, by energy source (in deaths per thousand terawatt hour), Statista, 2012

SPARC, het nieuwe MIT-experiment is veel kleiner dan de enorme reactor ITER, maar moet door de sterkere magnetische velden toch goede resultaten kunnen bereiken. Bron/copyright: MIT

Toekomstige technologie, van 2022 tot het jaar 4000

Sommige toekomstige technologie is er nu al in rudimentaire vorm. Denk aan kwantum computers en wetware, de interface tussen brein en machine. Voorspellen dat deze technologie effectiever en goedkoper wordt, is dus vrij veilig. Of dat deze nieuwe toepassingen krijgt.

Moeilijker te voorspellen is echt disruptieve technologie. Dat is technologie, die de mens vermogens geeft die deze tot nu toe nog niet had. Vooral technologie, die het gevolg is van nieuwe wetenschappelijke doorbraken. Toch doen de makers van deze video, een moedige poging. Dit op basis van bestaande trends en de bekende natuurkundige wetten.

De voorspelling in de video dat de Alcubierre drive werkt, is omstreden. Het effect waarop deze drive berust, is nog niet in een experiment aangetoond. Al vormt het warpveld waarop de Alcubierre drive berust een geldige oplossing van de algemene relativiteitstheorie.

Dat wil zeggen, geldig, als er negatieve energie bestaat op onze schaal, niet alleen maar op de schaal van kleine deeltjes. En er een methode is om deze te scheppen. We kunnen dan ook zelf wormgaten aanleggen. Daarmee zou je in principe zelfs tijd kunnen reizen.

Wormgaten en warp drives zijn nog onbewezen toekomstige technologie, maar in theorie mogelijk. Bron: Genty/Pixabay
Wormgaten en warp drives zijn nog onbewezen toekomstige technologie, maar in theorie mogelijk. Bron: Genty/Pixabay

Vind je nanotechnologie klein? Welnu, het kan nog kleiner. Stel je voor, een complete fabriek opbergen in de ruimte van een atoom. Dat kan in theorie met femtotechniek. Technologie op de schaal van een atoomkern. Mogelijk kunnen we in de toekomst de sterke kernkracht net zo manipuleren als de elektromagnetische kracht nu. Dan zouden er compleet nieuwe technieken ontstaan. En nieuwe kansen. Nieuwe dingen om mee te maken en te onderzoeken. Denk aan een bezoekje aan het binnenste van de zon, of de aarde, bijvoorbeeld. Dat, en nog veel meer, zou dan mogelijk zijn.

Nieuwe natuurwetten, toekomstige technologie

Alles staat of valt met de vraag, of onze natuurkundige wetten, de enige wetten zijn die bestaan. Of dat er mogelijk nog nieuwe wetten bestaan. Inderdaad zijn er dingen die we nog niet kunnen verklaren met de wetten die we nu kennen. Zo hebben we geen flauw idee, wat donkere materie precies is. En waar die enorme ringen vandaan komen in de hemel. Zo groot, dat ze haast wel het restant van een botsing met een ander heelal lijken te zijn. Ontdekken we nieuwe natuurwetten, dan ontdekken we ook enorm veel nieuwe potentiële apparaten.

Steeds meer mensen zeggen de censurerende gigant Facebook vaarwel en kiezen voor Friendweb.

Waarom Visionair de discussiegroepen voor visionairen naar friendweb.nl verhuist

Zonder vrijheid geen visionair denken
Visionair denken vereist totale intellectuele vrijheid. Elk alternatief moet afgewogen worden, zonder dat anderen ons gaan opleggen hoe wij moeten denken, of hoe we niet moeten denken. Vrijheid in denken is als zuurstof voor visionairen. Nooit zullen wij ons onderwerpen aan censuur.

En zeker niet aan censuur door Facebook-baas Mark Zuckerberg, die medeplichtig is aan landroof van het illegaal bezette Koninkrijk Hawai’i.

Geen vrijheid van maningsuiting meer op Amerikaanse sociale media
We moeten helaas vaststellen, dat door een misplaatste kruistocht tegen politiek incorrect denken het intellectuele debat steeds meer verengd wordt. Zwarte Piet is fout, “want” racistisch. Kritiek hebben op het rammelende covid-19 beleid van het regime-Rutte, dat zich baseert op – niet door enige wetenschappelijke inzichten gehinderde – rammelende adviezen van het RIVM is fout, “want” brengt de volksgezondheid in gevaar. Kritiek op eerwrakende soennieten is fout, “want” “islamofobie” is racistisch. Het recente verbod van Facebook op de folkloristische figuur Zwarte Piet vormde voor ons de druppel. We leven niet in de Verenigde Staten, maar in Nederland. De Usanen, met hun eigen inktzwarte verleden wat betreft landroof van Hawaiianen en het verjagen en uitmoorden van inheemse Amerikanen hebben geen enkel moreel recht om ons Nederlanders en Belgen voor te schrijven hoe wij een kinderfeest vieren.

Steeds meer mensen zeggen de censurerende gigant Facebook vaarwel en kiezen voor Friendweb.
Steeds meer mensen zeggen de censurerende gigant Facebook vaarwel en kiezen voor Friendweb.

Friendweb: het Nederlandse alternatief voor Facebook
Gelukkig is er nu een alternatief voor de steeds verstikkender wordende Amerikaanse sociale media-giganten. Friendweb. Friendweb is weliswaar nog klein, maar groeit snel. Friendweb is een Nederlandstalig alternatief, waar geen sprake is van censuur. Het opzetten van een concurrent voor een sociale netwerksite is niet gemakkelijk. Het is te vergelijken met het opzetten van een alternatief telefoonnetwerk. Toch geloven we dat dit initiatief kans van slagen heeft, als we er met alle vrijheidslievende Nederlandstaligen er voor gaan. Aan ons zal het niet liggen. We heten jullie welkom op Friendweb en natuurlijk in onze groep, https://friendweb.nl/visionair !

Het anti-zonnepaneel levert een beetje energie in de nacht. Bron: Stanford University

“Anti-zonnepaneel” wekt ’s nachts energie op

Zonnepanelen leveren alleen overdag energie op, want dan schijnt de zon. Dit is een belangrijke beperking aan zonnepanelen. Niet meer, zo lijkt het. Want nu zijn anti-zonnepanelen ontwikkeld die juist de meeste energie opwekken ’s nachts. Energie uit het Niets? In zekere zin: ja.

Zonnepanelen en thermodynamica
Er is een eenvoudige formule, waarmee het maximale rendement is te berekenen van een temperatuursuitwisseling: 100% * (Theet – Tkoud / Theet ). In woorden: het maximale rendement is gelijk aan het temperatuursverschil, gedeeld door de absoluut heetste temperatuur. In zekere zin maken zonnepanelen gebruik van het verschil in temperatuur tussen het zonneoppervlak en de aardoppervlakte. De oppervlakte van de zon is gloeiend heet, rond de zesduizend graden kelvin. De aardoppervlakte ligt in temperatuur iets onder de driehonderd kelvin (300 – 273 = 27 graden) . In theorie kunnen zonnepanelen daarom tot 95% van alle zonlicht in vrije energie omzetten, als ze perfect zouden werken: (6000-300)/6000 = 0,95. (Uiteraard haalt het gemiddelde zonnepaneel maar 15-23 procent, de absolute recordhouder in het lab behaalt 47,1 %.) [1]

Het anti-zonnepaneel levert een beetje energie in de nacht. Bron: Stanford University
Het anti-zonnepaneel levert een beetje energie in de nacht. Bron: Stanford University

Anti-zonnepanelen
Dit principe kan ook andersom werken. Onze aardoppervlakte heeft weliswaar een temperatuur van die driehonderd kelvin, maar de achtergrondtemperatuur van het heelal is maar 2,7 kelvin. Honderd maal zo laag dus. Een perfecte ‘heat engine’ zou daarmee zelfs 99% energieomzetting kunnen bereiken door dit warmteverschil af te tappen en de warmte het heelal in te pompen.

De anti-zonnecel produceert een beetje stroom, omdat de thermo-elektrische generator het warmteverschil tussen de koude radiatorplaat en de hetere ondergrond, aftapt. Bron: Stanford University
De anti-zonnecel produceert een beetje stroom, omdat de thermo-elektrische generator het warmteverschil tussen de koude radiatorplaat en de hetere ondergrond, aftapt. Bron: Stanford University

Dat laatste is ongeveer wat hier gebeurt. Anti-zonnepanelen koelen af door ’s nachts grote hoeveelheden warmte uit te stralen, het universum in, waardoor een warmteverschil ontstaat. Dit warmteverschil kan af worden getapt door in dit geval een materiaal dat spanningsverschillen produceert uit temperatuursverschillen. Zie diagram.

LEDje
Erg indrukwekkend is de opbrengst van het anti-zonnepaneel nog niet.  Eén vierkante meter radiatieve koeler (een zwart, goed warmte geleidend oppervlak) produceert een schamele 25 milliwatt. Dit is net genoeg om een klein ledje te laten branden. De onderzoekers zijn desalniettemin optimistisch. Ze denken dat het mogelijk is de opbrengst toe te laten nemen tot 500 milliwatt per vierkante meter. Vergeleken met een zonnepaneel is dat niet veel. Een zonnepaneel haalt toch al gauw boven de 100 watt per vierkante meter, 200 maal zoveel. Wel kan dit systeem kleine stroomgebruikers, zoals sensors, continu van stroom voorzien. Dat maakt het systeem toch interessant om door te ontwikkelen. Al is het maar, zoals de onderzoekers al opmerken, dat het opmerkelijk grappig is is om licht uit de duisternis op te wekken.

Bronnen:
1. Best Solar Efficiencies (.pdf)
2. Aaswath P. Raman, Wei Li en Shanhui Fan, Generating Light from Darkness, Joule, 2019, DOI:https://doi.org/10.1016/j.joule.2019.08.009

Climeworks is één van de bedrijven die nu sterk inzet op CO2-winning uit de lucht. Bron: Climeworks

Direct air capture: de CO2 economie gaat nu echt doorbreken

Kooldioxide is een omstreden broeikasgas en wordt vaak gedemoniseerd. Steeds vaker wordt CO2 nu benut als koolstofbron. Lost direct air capture (DAC) zowel het fossiele-brandstofprobleem als de door de mens veroorzaakte opwarming op?

Kooldioxide, een gas met twee kanten
Kooldioxide is een gevreesd broeikasgas, maar afgezien hiervan is kooldioxide een waardevol en onlosmakelijk onderdeel van het aardse ecosysteem. Vanuit plantaardig standpunt heeft de mensheid een welkom einde gemaakt aan een nijpende CO2-hongersnood. Koolstof is in levende organismen en de industrie een onmisbaar element. Koolstofatomen kunnen namelijk vier stabiele covalente bindingen aangaan, zowel met sterk elektronegatieve elementen als zuurstof, als met elektropositieve elementen. Koolstof kent van alle elementen de rijkste chemie. Koolstofketens vormen daarom de ruggengraat van vetten, van koolhydraten en zijn ook in aminozuren, de bouwstenen van eiwitten, onmisbaar.

De belangrijkste tak van chemie, organische chemie, houdt zich alleen met koolstofverbindingen bezig. Op dit moment is de voornaamste bron van koolstof aardolie. Tot op heden was aardolie, met aardgas en de lastig handelbare steenkool, het goedkoopste alternatief. Daar lijkt nu verandering in te komen. De reden: DAC.

Wat is direct air capture?
Onze atmosfeer bestaat uit 78% stikstof, 21% zuurstof en 1% argon, een edelgas. Kooldioxide maakt 0,04% van onze atmosfeer uit. Direct air capture distilleert kooldioxide uit de lucht. De traditionele, maar veel energie vergende methode is lucht samen te persen en af te koelen tot het sublimatiepunt van kooldioxide: -78 graden bij atmosferische druk. Op dit moment wordt veel onderzoek gedaan naar speciale filters en chemicaliën om hiermee selectief kooldioxide uit de lucht te filteren. De theoretisch maximale efficiency voor dit proces is 250 kilowattuur per ton gewonnen CO2. Dat is extreem veel energie: de energierekening van een gemiddeld gezin voor een seizoen, of, anders uitgedrukt: om deze 250 kWh op te wekken, komt 125 kg CO2 vrij bij grijze stroom. En we spreken hier over een theoretisch optimum: in de praktijk is meer energie nodig. Tot voor kort was dit een onoverkomelijke barrière voor DAC, maar het oprukken van goedkope zonne-energie en slimmere scheidingstechnieken maakt DAC nu interessant.[1]

Climeworks is één van de bedrijven die nu sterk inzet op CO2-winning uit de lucht. Bron: Climeworks
Climeworks is één van de bedrijven die nu sterk inzet op CO2-winning uit de lucht. Bron: Climeworks

Wat doen we met deze CO2?
Sommige bedrijven pompen water met deze CO2 in een onderaardse CO2-absorberende laag, zoals poreus basalt, waarin de kooldioxide mineraliseert. Hiermee wordt de CO2 inderdaad effectief opgeborgen. Anderen gebruiken de CO2 als meststof voor tuinders (onder hoge CO2-concentraties stijgen de opbrengsten met 25% of meer) of voor het carboniseren van frisdrank.
Maar in feite is dit maar het begin van de mogelijkheden. In principe kan kooldioxide om worden omgezet in eenvoudige organische moleculen zoals methanol[2] of ethanol. Grafeen. Diamant. Of wellicht biochar, poederkool die de bodem beter water en voedingsstoffen vast laat houden.Hebben we eenmaal overvloedig energie, dan zijn de mogelijkheden bijna eindeloos.

Bronnen
1. M. Fasihi et al., Techno-economic assessment of CO2 direct air capture plants, Journal of Cleaner Production
Volume 224, 1 July 2019, Pages 957-980, DOI: 10.1016/j.jclepro.2019.03.086
2. Xiaowa Nie, Xiao Jiang, Haozhi Wang, Wenjia Luo, Michael J. Janik, Yonggang Chen, Xinwen Guo, Chunshan Song. Mechanistic Understanding of Alloy Effect and Water Promotion for Pd-Cu Bimetallic Catalysts in CO2 Hydrogenation to Methanol. ACS Catalysis, 2018; 8 (6): 4873 DOI: 10.1021/acscatal.7b04150

Narikel Janjira, buiten Bangladesh beter bekend als Saint Martin's Island, wordt een steeds geliefdere toeristische bestemming.

Bangladesh bereidt zich voor op een toekomst op het water

Stel, je woont in een dichtbevolkt land waarvan geregeld de helft onderstroomt. Tot overmaat van ramp stijgt de zeespiegel. Komt het bekend voor? Bangladesh zit met hetzelfde probleem als Nederland. Wat kan Nederland leren van de Blauwe Economie van Bangladesh?

Bangladesh: van armste land ter wereld tot maritiem powerhouse
Toen de Bangladeshi zich met de hulp van India bevrijdden van Pakistaanse onderdrukking in 1971, leek de situatie hopeloos. Bangladesh is drie keer zo dicht bevolkt als Nederland en België: de 160 miljoen overwegend islamitische Bangladeshi  bewonen een laag liggende rivierdelta van 3,5 maal Nederland. Bij zware moessons loopt vaak meer dan de helft onder water. Het Pakistaanse leger hield wreed huis, waarbij naar schattingen van de Bengaalse overheid drie tot tien miljoen Bengalen zijn vermoord. Vooral intellectuelen moesten het ontgelden. Ook werd er veel infrastructuur vernield. Kortom: Bangladesh was na de onafhankelijkheid een ruïne. Van het ooit gouden Bengalen (shonara Bangla) was weinig over. De Bangladeshi moesten letterlijk hun land uit een moeras opbouwen.

En dat deden ze. Het uitermate wrede optreden van het Pakistaanse leger, opgehitst door extremistische Deobandi mullahs die de Bangladeshi tot koeffaar (ongelovigen) verklaarden, genas de Bangladeshi grondig van utopische idealen over een islamitische samenleving. Ze wisten dat de toekomst alleen maar beter kon worden dan het heden. De Bengaalse diaspora en buitenlandse hulp stonden de bevolking bij. Bangladesh schuilde onder de militaire paraplu van machtig buurland India, waardoor de Bangladeshi zich konden toeleggen op het opbouwen van hun land, en niet, zoals de bezetter Pakistan, miljarden hoefden te verspillen aan tanks, raketten en vliegtuigen. Bangladesh slaagt er zelfs in meer dan een miljoen Rohingya vluchtelingen op te vangen. Dat aantal is evenveel als het honderd maal zo rijke Duitsland opgevangen heeft.

Belastingen zijn laag en ondanks de hardnekkige corruptie, werd het geld dat binnenkwam grotendeels verstandig besteed. Het gevolg hiervan is dat de economie van Bangladesh groeit als kool, gemiddeld zo’n zes procent per jaar. Toch dreigen er donkere wolken aan de horizon. Het voornaamste probleem is de stijgende zeespiegel, die het landoppervlak van Bangladesh drastisch zal doen afnemen..Bangladesh besloot daarom voor de vlucht naar voren te kiezen. Succesvolle onderhandelingen met buren India en Myanmar legden de maritieme grenzen vast, waardoor het bruikbare oppervlak voor Bangladesh bijna verdubbelde. Een steeds groter deel van de economische groei komt nu uit het ontwikkelen van de zogeheten blauwe economie.

De blauwe economie: wonen en verbouwen op het water
Drijvende tuinen: Als landdieren zijn wij mensen van nature huiverig voor water. We zijn geneigd water te zien als verloren land. Dit is onterecht. Met enige aanpassingen is water prima om te toveren tot productief landbouwgebied. Zo worden drijvende tuinen in Bangladesh steeds populairder[1]. In het zuiden van het land groeit veel waterhyacint, in de subtropen een hardnekkig wateronkruid dat natuurlijk drijfvermogen  levert.  Dit wordt als ondergrond voor drijvende tuinen gebruikt. De laag met waterhyacint wordt bedekt met teelaarde. In het noorden groeit weinig waterhyacint, waardoor gebruik wordt gemaakt van plastic drijvers, zoals lege plastic vaten. Varianten die nu ook worden uitgerold zijn drijvende eendenhokken, drijvende scholen en visvijvers. De kosten voor deze drijvende tuinen zijn relatief laag: alleen arbeidsloon voor drijvende tuinen op basis van waterhyacinth, $260 (rond de tweehonderd euro) voor een drijvende tuin van honderd vierkante meter met plastic drijvers. Geen wonder dat de overheid van Bangladesh veel ziet in dit systeem en het uit wil breiden tot 20 000 vierkante kilometer oppervlak. [2] Ook in het buitenland is deze uitvinding uit Bangladesh een doorslaand succes. Onder andere Cambodja en de Filippijnen passen het concept nu toe.

Narikel Janjira, buiten Bangladesh beter bekend als Saint Martin's Island, wordt een steeds geliefdere toeristische bestemming.
Narikel Janjira, buiten Bangladesh beter bekend als Saint Martin’s Island, wordt een steeds geliefdere toeristische bestemming.

Nederland en in beperkte mate België kan dit ook. Zo kunnen we zeewier kweken, enkele proefboerderijen zijn al actief. Wanneer visteelt, intensieve varkenshouderij en sommige tuinbouw naar de zee wordt verplaatst, vermindert dit de milieubelasting enorm. Ook wordt de ziektedruk veel minder.

Het continentaal plat van Bangladesh verdubbelt de oppervlakte van het land. Bron: 3.
Het continentaal plat van Bangladesh verdubbelt de oppervlakte van het land. Bron: 3.

Zeebodem exploiteren: een overeenkomst tussen India en Bangladesh maakte de weg vrij om de zeebodem die grenst aan Bangladesh in gebruik te nemen. [3] Deze deal verdubbelt de oppervlakte van Bangladesh en maakt het mogelijk naar olie en gas te boren, voorzover nog relevant, en zeemineralen te winnen.

Toerisme: de eilanden in de Zee van Bengalen zijn omringd door koraal en kleurrijke vissen. Onder andere het eiland Saint Martin (Narikel Jinjira) wordt hierdoor steeds populairder bij toeristen. Sommige planners overwegen het creëren van nieuwe eilanden. Dit zou Nederland ook kunnen doen.

Bronnen
1. The floating gardens of Bangladesh, New York Times (2014)
2. Floating Garden Agricultural Practices in Bangladesh: A Proposal for Globally Important Agricultural Heritage Systems (GIAHS), ministerie van landbouw van Bangladesh
3. BD gets 19,467 sq km disputed area in the Bay; Exclusive economic zone and continental shelf up to 667 km in the sea, Bangladesh Chronicle, 2014

De binnenkant van een O'Neill cilinder. Bron: NASA/Don Davis via Wikimedia Commons

Terrabuilding in plaats van terraforming: de voordelen van O Neill cilinders

Overbevolking? Onzin, tenminste als we ruimtevaart voortvarend aanpakken. In het zonnestelsel is er voldoende materiaal voor het aanmaken van biljoenen malen de aardoppervlakte. Hoe? Door langzaam roterende O’Neill cilinders te maken.

Op aarde gebruiken we in het dagelijkse leven alleen maar de eerste meters van de aardkorst. De rest heeft voor ons maar één functie: zwaartekracht opwekken. Wat, als we die zwaartekracht op een andere manier kunnen opwekken? Dat kan: namelijk door de middelpuntvliedende pseudokracht, zoals aan de binnenkant van een ronddraaiende cilinder. Een cilinder met twee kilometer doorsnede moet bijvoorbeeld één maal per minuut roteren om een aardachtige “zwaartekracht” op te wekken.

Professor Gerard O’Neill werkte het idee van roterende ruimtekolonies verder uit en berekende, dat een cilinder van staal maximaal vier kilometer in diameter en dertig kilometer in lengte kan zijn. (Hier een artikel voor leken) Er ontstaat zo een “ruimte-eiland” met vierhonderd vierkante kilometer leefruimte, ongeveer de oppervlakte van Malta, Singapore, Texel of Andorra. Met koolstofnanovezels kunnen zelfs veel grotere ruimtekolonies met de grootte van een klein continent worden gebouwd. In deze video een grondige behandeling van het fenomeen O’Neill cilinders, zoals we die van Isaac Arthur gewend zijn.

De meest geschikte locaties voor O’Neill cilinders zijn de twee Lagrangepunten die tussen de aarde en de maan liggen: L4 en L5. Het kost daar geen energie om op dezelfde plek te blijven hangen. Deze vormen ook een ideale opstapplek voor vrachtverkeer richting de asteroïdengordel. Worden deze Lagrangepunten straks de overslagkades van het zonnestelsel?

Lees ook
Hoe is het leven in een ruimtekolonie?
Uitgeholde asteroïde

Sport onder gewichtsloze omstandigheden kan groot worden. Hier een bal die aan boord was van de verongelukte Space Shuttle Challenger. Bron: NASA

Hoe zullen ruimtehavens er uit zien?

De aarde vormt een diepe zwaartekrachtsput en is daarmee niet erg geschikt als haven voor ruimtevoertuigen. Waar kunnen we het beste het overslagpunt voor ruimtereizen inrichten? De maan, een van de Lagrangepunten van het aarde-maanstelsel of toch maar LEO, low earth orbit?

"Metrokaart" van het zonnestelsel met delta-v per node. Klik voor een vergroting. Bron: User: CuriousMetaphor op reddit.com
“Metrokaart” van het zonnestelsel met delta-v per node. Klik voor een vergroting. Let op: zeer groot, doe dit niet op je databundel. Bron: User: CuriousMetaphor op reddit.com

Wat is delta v en waarom is delta v zo belangrijk in de ruimtevaart?
Delta v is de totale verandering (delta in natuurkundige vergelijkingen) in snelheid (v). Delta v wordt uitgedrukt in kilometers per seconde. Als de intercity waarin je zit versnelt van 0 naar 240 km/uur en vervolgens weer stopt bij het volgende station, is de delta v (240 + 240 = 480) km/uur (oftewel: 0,133 km per seconde). Op aarde is dat niet zo belangrijk. Een trein kan afremmen op de rails en de elektromotor. In het luchtledig van de ruimte kan dat niet, je zou misschien de zonnewind of het magneetveld van de zon of de aarde kunnen gebruiken, of je snelheid verkleinen of vergroten door een “gravity slingshot” langs een planeet, maar dat is het dan wel. Dat betekent: zowel versnellen als afremmen kost evenveel raketbrandstof. Raketbrandstof die je aan het begin van je reis moet meenemen, want er zijn nog geen tankstations onderweg. En waarbij het ook weer veel brandstof kost om deze extra brandstof mee te nemen. Voor de gemiddelde interplanetaire missie bestaat maar enkele procenten van het laadgewicht uit nuttige lading. De rest, meer dan 90 tot 98 procent, is stuwstof. Kortom: de delta v van je reis wil je zo laag mogelijk hebben.

Sport onder gewichtsloze omstandigheden kan groot worden. Hier een bal die aan boord was van de verongelukte Space Shuttle Challenger. Bron: NASA
Sport onder gewichtsloze omstandigheden kan groot worden. Hier een bal die aan boord was van de verongelukte Space Shuttle Challenger. Bron: NASA

Zwaartekrachtsput
Van alle delta v die nodig is om van de aarde naar bijvoorbeeld Mars te reizen, ongeveer 20 km/s, is er maar liefst 11,1 km/s nodig om volledig aan de aarde te ontsnappen. Voor de eigenlijke reis van de aarde naar Mars zelf veel minder, ongeveer 1 km/s. De rest is nodig om op Mars tot stilstand te komen, tenzij je wilt eindigen als de zoveelste krater op het al behoorlijk geteisterde oppervlak van Mars. Dat maakt de aarde een slechte keuze als overslagstation voor interplanetaire ruimtevaart. Een retourtje aarde vanaf een Lagrangepunt komt je op meer brandstof te gaan dan een enkele reis Mars: 22 km/s. Laat staan, als die enkele reis Mars via twee strategisch geplaatste ruimtehavens op de Lagrangepunten van de aarde en Mars verloopt: rond de 1 km/s. Kortom: een snuggere ruimteveerdienst blijft ver uit de buurt van de aarde en maakt gebruik van de Lagrangepunten. Hier een video met meer details.

Leven in een ruimtehaven
In het begin zal een ruimtehaven spartaans ingericht zijn, maar dat zal niet zo blijven. Als ruimtemijnbouw en het koloniseren van de rest van het zonnestelsel echt op gang komt, zal het een komen en gaan zijn van passagiers. Ook is een ruimtestation een toeristische attractie op zich. Denk aan de vele mogelijkheden van gewichtloosheid. Of het spectaculaire uitzicht op de aarde. Fabrieken waar hoog-vacuüm of microzwaartekracht benut kunnen worden? Casino’s? Zero gravity sportzaal? De mogelijkheden zijn zo eindeloos als de ruimte zelf.

Het NASA Kilopower experiment is bedoeld voor astronauten om zelf 1-10 kilowatt stroom op te wekken. De 93% uranium-235 in de brandstofkern maakt het iets minder aantrekkelijk voor thuisgebruik. Bron: Wikimedia Commons/NASA

Hoe wek je zelf je stroom op?

De Nederlandse overheid ontdekt gas en stroom steeds meer als lucratieve melkkoe. Off grid gaan, wat is daar voor nodig? Dit stappenplan kan helpen om jezelf los te koppelen van het stroomnet..

Raak vertrouwd met je stroomverbruik en identificeer de grootste stroomslurpers. Zoek hiervoor stroomzuiniger alternatieven.
Elke dag gebruikt de gemiddelde Nederlander of Vlaming zo’n vijf kilowattuur aan stroom. Ontdek hoe hoog jouw stroomverbruik is en hoe dat over de dag verdeeld is. Zonnestroom, bijvoorbeeld, is overvloedig aanwezig overdag en in de zomer, maar niet meer zodra de zon onder is en in de winter. Uit onderzoek blijkt dat drie op zich vrij nutteloze apparaten verantwoordelijk zijn voor het leeuwendeel van het stroomverbruik. Dat zijn waterbedden, elektrische boilers en tropische aquaria. Ook apparaten als vrieskisten, koelkasten en plasmaschermen zijn bericht om hun hoge stroomverbruik. Identificeer met een stroommeter de grootste stroomvreters. Wil je onafhankelijk worden, dan kan je deze het beste uit je leven bannen. Hoe minder stroom je gebruikt, hoe makkelijker het is om zelf in je stroom te voorzien. Slaag je er bijvoorbeeld in om je stroomgebruik terug te brengen tot bijvoorbeeld één kilowattuur per persoon per dag, dan heb je vijf maal zo weinig stroomleveranciers en opslagcapaciteit nodig.

Bekijk, welke mogelijkheden er zijn voor alternatieve energie.
De meest bekende vorm van alternatieve energie is de zon. Zonne-energie kan in twee vormen benut worden: via een zonneboiler op het dak of via zonnepanelen. De zon kan enorm veel vermogen leveren – op jaarbasis levert een zonnepaneel in de Lage Landen per kilowatt geïnstalleerd vermogen (1000 Wp) dat optimaal geplaatst is (45 graden, zuiden) zo’n 950 kilowattuur op. In theorie zou dat betekenen, dat het gemiddelde huishouden met vierduizend Wp volledig zelfvoorzienend zou zijn. Het nadeel van zonne-energie is de variabiliteit, vooral tussen winter en zomer. In de winter leveren zonnepanelen ongeveer een kwart op van de energie die ze in de zomer opleveren. Wil je energie-onafhankelijk worden, dan is het -zeker met de lage prijzen voor zonnepanelen nu – te overwegen om te overdimensioneren voor de winterzon en de zonnepanelen onder een hoek van minimaal 40 graden te plaatsen, zodat de opbrengst in de winter maximaal is.

Helaas stierf de Hyperion nucleaire batterij een vroege dood. Dit kleine apparaat kan een eiland zo groot als Texel voor twintig jaar van stroom voorzien.
Helaas stierf de Hyperion nucleaire batterij een vroege dood. Dit kleine apparaat kan een eiland zo groot als Texel voor tien jaar van stroom voorzien.

Het kan zijn dat lokale omstandigheden bijzondere vormen van energiewinning mogelijk maken. Zo maken veel boeren in de polders gebruik van brongas. Beschik je over een groter stuk land, dan worden biogas, houtgas en houtkachel interessant om in de winter voor aanvullende energie te zorgen.
Zorg in het geval van biogas wel voor goede isolatie of bijverwarming om de temperatuur van de gistingstank boven de 25 graden te houden. Een kilogram GFT-afval levert genoeg biogas om een uur op te koken.

Ook kan je papier inzamelen bij vrienden en bekenden; de verbrandingswaarde van papier per kilogram is ongeveer een derde van die van benzine. Door papieren briketten op te stoken, gemaakt van eigen papier met een brikettenpers, is in ongeveer de helft van de jaarlijkse warmtebehoefte te voorzien. Houtkachels zijn mooi te combineren met een Stirlinggenerator of Seebeck effect generator. Het rendement van Stirlinggeneratoren is niet verbijsterend hoog, te vergelijken met die van een benzinegenerator, maar ze hebben alleen een warmteverschil nodig om elektriciteit te genereren. Dat maakt Stirlinggeneratoren een droom voor creatieve knutselaars. Waar je dit warmteverschil vandaan haalt, maakt namelijk niet uit. Helaas zijn er alleen speelgoedmodellen of industriële modellen te koop. Prijzen voor particulieren liggen rond de tien- tot vijftienduizend euro. Beschrijvingen van kleinschalige zelfbouwmodellen van Stirlingmotoren en Seebeck effect generatoren zijn hier te vinden.

Een minder milieuvriendelijk, maar wel betaalbaar alternatief is het kopen van een generator op fossiele brandstof. Een dieselgenerator van vijfduizend watt kan voor onder de tweeduizend euro aangeschaft worden. Dieselgeneratoren kunnen met plantaardige oliesoorten zoals zonnebloemolie, afgewerkte frituurolie of slaolie gestookt worden. 8 uur stroom kost 13,5 liter diesel. Rond de vijftien euro per dag dus, of rond de dertig cent per kilowattuur. Dit is erg veel; hierbij zijn de kosten van de generator nog niet meegerekend. Wel is dit slechts een beperkt aantal malen nodig bij een forse overdimensionering van zonnepanelen.

Energieopslag
De variabiliteit van duurzame energiebronnen maakt het noodzakelijk om te investeren in een goede elektriciteitsopslag. Bekend is bijvoorbeeld de -dure- PowerWall van autofabrikant Tesla. Deze levert 13,5 kWh opslagcapaciteit voor rond de tienduizend euro. De Velkess vliegwiel kickstarter, waarover we eerder schreven, is helaas mislukt. Als gebruik wordt gemaakt van loodaccu’s, is deze 13,5 kWh opslagcapaciteit te realiseren voor omgerekend drie- tot vierduizend euro, zij het met grote verliezen aan stroom. Waar mogelijk moet je energie-intensieve taken, zoals de wasmachine gebruiken, plannen als er een overvloed aan energie is.

Een aardig alternatief qua verwarming, voor wie beschikt over veel land, is de zonnevijver. Water is door de zeer hoge warmtecapaciteit één van de beste warmteopslagmedia die er bestaan. Wel moet deze vijver dan goed geïsoleerd worden of overdekt worden door een kas. Per slot van rekening moet de vijver meerdere maanden de hoge temperatuur behouden.