bioplastic

Nieuw wondermateriaal uit houtpulp

Door middel van een goedkoop proces kan uit houtafval nanocellulose, een biologisçh afbreekbaar  materiaal worden gemaakt dat per gram maar liefst acht maal zo sterk is als staal en, ongelofelijk maar waar, elektriciteit geleidt. Heel veel plastics worden hiermee overbodig.

Het geheim van de oude bekende cellulose
Hout en andere vezelrijke plantaardige producten, denk aan papier, bestaan voor het grootste deel uit cellulose. Het is cellulose dat hout zijn enorme treksterkte en (lagere) draagvermogen geeft. Wetenschappers hebben pas sinds de komst van de scanning tunneling microscoop ontdekt dat zuivere cellulose, nanocellulose, nog vele malen sterker kan zijn dan hout.

Nanocellulose kan ook zeer veel water opnemen. Bron: Wikimedia Commons
Nanocellulose kan ook zeer veel water opnemen. Bron: Wikimedia Commons

Cellulose is namelijk opgebouwd uit een (voor mensen onverteerbare) suiker die duizenden moleculen lange ketens vormt. Omdat er in een plant allerlei moleculen omheen zitten en de celluloseketens kriskras door elkaar lopen, wordt de polymeermatrix verstoord en breken de celluloseketens gemakkelijk. Zuivere cellulose, daarentegen, waarbij de celluloseketens in elkaars verlengde liggen, biedt een enorme treksterkte die die van bestaande plastics als polyetheen en polypropeen hopeloos in de schaduw stelt.

Olie niet meer nodig voor plastic
Goed nieuws voor oliehaters, want meer dan één op de tien vaten olie eindigen als plastic. Aanvullend goed nieuws is dat de vezels niet absurd lang hoeven te zijn voor hun treksterkte, denk aan enkele duizendste millimeter. Dit betekent dat het wondermateriaal gemakkelijk verwerkt kan worden in bijvoorbeeld tasjes of de carosserie van de auto. Kortom: er is nu een bioplastic dat de functies van de meeste plastics over kan nemen.

Productie relatief eenvoudig
De cellulose-nanovezels kunnen gewonnen worden door het bronmateriaal (bijvoorbeeld houtpulp) te behandelen met enzymen, die de overige stoffen als lignine of hemicellulose losweken en afbreken, en daarna te roeren, waarna een behandeling met zuur volgt. Hierbij wordt per kg nanocellulose 1 kWh energie geïnvesteerd. Overal ter wereld, waaronder India, Zweden en de VS worden  nu fabrieken voor het wondermateriaal gebouwd. Naar verwachting zal de kostprijs per kilo van  de supersterke vezel over enkele jaren op slechts enkele euro’s liggen. Een ontwikkeling om in de gaten te houden.

Ik heb internet uitgekamd naar een bron voor het goedje waar je als particulier of klein bedrijf kan bestellen, maar ben er helaas niet in geslaagd. Als een lezer een bron weet, laat het dan hieronder weten, zodat de uitvinders onder ons wat leuke toepassingen kunnen bedenken voor dit spul echt mainstream gaat.

Bron
Marielle Henriksson et al., Cellulose Nanopaper Structures of High Toughness, Biomolecules, 2008

 

Scheikundige maakt plastic van snoeihout of gras

Het begint erop te lijken dat plastic op basis van aardolie zijn beste tijd heeft gehad. Dat denkt althans hoogleraar Anorganische chemie en Katalyse Krijn de Jong (Universiteit Utrecht). Hij publiceerde in het wetenschappelijke tijdschrift Science zijn onderzoek naar een betaalbaar en schoon alternatief: groen plastic van snoeiafval, oude takken, en gras.

Boterhamzakjes van gras en plastic emmers van wilgentakken. Dankzij nieuwe methodes is dat binnenkort mogelijk. Bron afbeelding: Wikipedia

Uit aardolie worden heel veel producten gemaakt, zoals diesel, benzine, kerosine, maar ook medicijnen en schoonmaakmiddelen, antivries, verf en plastics. De Jong ontwikkelde een nieuw soort katalysator om niet-eetbare biomassa (gras, hout) om te zetten in bouwstenen voor exact diezelfde producten, maar dan zonder gebruik van aardolie. Dat is niet alleen schoner, volgens De Jong, maar ook noodzakelijk. Aardolie is duur en er is veel te weinig van om onze huidige levensstijl te handhaven. Er moet een alternatief komen dat betaalbaar is en dat niet concurreert met andere hulpbronnen, zoals voedsel.

Olifantengras
Voor alle duidelijkheid: bioplastic bestaat al veel langer, maar dan op basis van eetbare grondstoffen zoals mais, aardappels en suikerbieten. Een probleem van dit soort bioplastics is dat ze de voedselvoorziening bedreigen. Een tweede obstakel is dat deze bioplastics biologisch afbreekbaar zijn. Dit is goed voor het milieu, maar voor de bruikbaarheid en duurzaamheid van het product is het minder geslaagd. Laat een emmer van biologisch afbreekbaar plastic een tijd buiten staan en bacteriën vreten de emmer helemaal op. Het is dus geen geschikte vervanging voor plastics van aardolie.

Niet-eetbare biomassa, zoals snelgroeiende gras- en boomsoorten (olifantengras of wilgentakken) hout, gras, snoeiafval en landbouwafval is echter wel zeer geschikt als substituut. Met de door De Jong ontwikkelde katalysator – die is opgebouwd uit minuscule ijzerdeeltjes – is het mogelijk om de biomassa (in de vorm van gas) om te zetten in bruikbare bouwstenen voor plastics en andere stoffen. Voor elke ton plastic is zo’n 1,5 tot 2 ton biomassa nodig.

Door de nieuwe katalysator wordt het produceren en verwerken van bioplastics veel goedkoper. Het gebruik van ijzerdeeltjes is gunstig – het is tenslotte niet het duurste materiaal – maar ook de speciale ondergrond van de katalysator werkt kostenbesparend. Hierdoor stabiliseren de ijzerdeeltjes en gaat de katalysator langer mee en wordt daarmee ook interessant voor de chemische industrie.
Consumenten hoeven overigens niet bang te zijn dat het nieuwe bioplastic van mindere kwaliteit is, minder sterk of minder buigzaam. De eigenschappen van de bouwstenen van het bioplastic en het plastic op basis van aardolie zijn namelijk exact hetzelfde. Je kunt er dus precies dezelfde eindproducten van maken.

Zilte grond
Bioplastic klinkt dus als een prachtige oplossing, maar is het ook werkelijk milieuvriendelijk? Net als plastic gemaakt van aardolie moet ook bioplastic na gebruik worden verbrand. Hierbij komt schadelijke CO2 vrij. En er is landbouwgrond nodig om de biomassa op te kweken, wat ontbossing in de hand werkt en een gevaar is voor de biodiversiteit.

De Jong bestrijdt de kritiek: “In dit proces is de kring rond, en wordt er niks verspild. Aardolie wordt opgestookt en is voorgoed weg, maar biomassa blijft groeien door opname van CO2 en brengt tijdens dat proces weer nieuwe zuurstof in de lucht. Dit compenseert de CO2 die vrijkomt bij de verbranding.”

Om zo min mogelijk kostbare landbouwgrond te verspillen, moet de biomassa op zilte grond worden gekweekt, die boeren toch niet gebruiken om graan of aardappelen op te zetten. En er moeten harde groeiers zoals olifantengras worden gebruikt zodat de productie op gang blijft.

China
De komst van een duurzaam alternatief voor aardolie is hard nodig, aldus De Jong. Maar het is niet de oplossing voor het tekort aan brandstoffen. “We moeten met zijn allen gewoon veel minder gaan gebruiken. De wereld moet verduurzamen, want wat we nu opsouperen kan met biomassa als brandstof nooit worden bijgebeend. We zitten op de goede weg als we de helft minder gebruiken. De andere helft kunnen we dan met duurzame brandstoffen oplossen.”

Of dit economisch gezien een realistisch scenario is, daar durft De Jong nog weinig over te zeggen. Hoewel gebruik van biomassa in feite goedkoper is dan aardolie, staan de fabrieken die aardolie verwerken er al. Althans, in het Westen. In landen als China en India kunnen ze die keuze vaak nog maken. “Ik verwacht dat daar meer interesse is voor groene grondstoffen dan hier.”

De Utrechtse onderzoekers gaan in samenwerking met Dow Benelux de katalysator verder ontwikkelen. Mogelijk verschijnen hierdoor al binnen enkele jaren producten die met deze techniek zijn gemaakt.

Bron:

DUB

Publicatie van 17 februari in Science