koolstofnanobuisjes

Natuurlijk voorkomend koper. Wordt koper vervangen door koolstofnanobuisjes in stroomdraad?

Vervanger van koper gevonden

Koperdiefstallen zijn een steeds hardnekkiger plaag. Daar zou wel eens verandering in kunnen komen. Met deze revolutionaire ontdekking zijn onderzoekers er in geslaagd, een vervanger van koper te vinden: koolstof.

Natuurlijk voorkomend koper. Wordt koper vervangen door koolstofnanobuisjes in stroomdraad?
Natuurlijk voorkomend koper. Wordt koper vervangen door koolstofnanobuisjes in stroomdraad? Bron

Kopervervanger dringend nodig

Koper is een erg goede elektrische geleider. Van alle metalen geleidt alleen het nog schaarsere zilver, stroom nog beter. Geen wonder dat koper heel veel gebruikt wordt voor elektronica en stroomkabels. Vooral de sterke vraag uit China maakt nu dat een kilo koper al gauw meer dan zes euro kost en geen koperhoudend voorwerp meer veilig is voor het dievengilde.

Onderzoekers zijn er nu voor het eerst in geslaagd een vervanger voor koper te vinden.[1] Een materiaal dat stroom beter geleidt dan dit steeds schaarser wordende metaal dus. Het materiaal in kwestie is koolstof, dat in de vorm van steenkool, kooldioxide en carbonaten zeer veel op aarde voorkomt. Het wordt een stroomgeleider in de vorm van een oude bekende: koolstofnanobuisjes, die veel weg hebben van een opgerold stukje grafeen. Koolstofnanobuisjes houden ook al een andere record: het materiaal met de hoogste treksterkte ter wereld.

Jarenlang moeizaam onderzoek levert vervanger

Na jarenlang moeizaam werk zijn onderzoekers zo ver dat de stroomdichtheid van koolstofnanobuisjes even groot is als die van koper. Dat wil zeggen: per volume-eenheid. Per kilo scoort het materiaal zelfs zes keer beter omdat het veel lichter is. Individuele buisjes geleiden zelfs tien keer zo goed stroom als koper, maar technisch was het tot nu toe niet mogelijk uit koolstofnanobuisjes een dikke stroomkabel te maken. De experimenten zijn uitgevoerd met dubbelwandige buisjes, die makkelijker te maken en te bewerken zijn. De onderzoekers willen nu een stroomkabel ontwikkelen die veel beter stroom geleidt dan koper. Daarvoor moeten ze enkelwandige koolstofnanobuisjes tot een stroomkabel ziet samen te vlechten. Een lastige uitdaging.

Voordelen

Naast een einde aan het kopertekort, besparen de nieuwe, lichte kopervervangers ook veel gewicht. Goed nieuws dus voor vliegtuig- en ruimteschip bouwers. Koolstof is zeer resistent tegen corrosie, dus de koolstof stroomkabels kunnen ook in chemisch zeer vijandige omgevingen gebruikt worden. Als de onderzoekers de belofte van een veel beter geleidend alternatief voor koper waar kunnen maken, wat ze gaan proberen,  betekent dit dat de zeven procent energie die nu als transportverliezen verloren gaat in het hoogspanningnet, wordt gehalveerd of nog beter. Dit geldt des te sterker nog voor de stroomkabels in huis. De kans is dus aanwezig dat deze kabels overal in huis zullen opduiken en dat het koper weer wordt omgesmolten tot mooie standbeelden of munten. Wat moet je er anders mee?

Langzame opmars koper vervangers

De opmars van koolstofnanobuisjes als geleider bleek in de praktijk minder soepel te lopen dan eerst gedacht. Het is nog steeds erg duur om koolstofnanobuisjes in grote hoeveelheden te produceren, al dalen de prijzen. Begin 2021 liggen deze rond de 200 euro per kilogram. Dit is nog steeds vele malen meer dan koper. Wel is de dichtheid van koper veel hoger is dan die van koolstofnanobuisjes. En nog niet alle problemen zijn opgelost. Onderzoekers worstelen nog steeds met het aan elkaar aan laten sluiten van de buisjes. Zolang dat niet lukt, blijft er veel interne weerstand in de kabels zitten. Waarschijnlijk worden de eerste toepassingen die in ruimtevaart en vliegtuigen. Hier is gewichtbesparing erg belangrijk.

In 2019 was de “technical readiness level” bijna 3. Dat betekent, dat is aangetoond dat het principe werkt, maar er nog geen in het lab gevalideerd prototype is. [3] Ga dus voorlopig geen kopermijnen shortsellen. Maar op iets langere termijn zal koper waarschijnlijk de weg van het bakeliet gaan. Zeker, nu een grote fabrikant, Yazaki, al koolstofnanovezels in aluminium kabels verwerkt om deze even goed stroom te laten geleiden als koper [4].

Bron:
1. Yao Zhao, Jinquan Wei, Robert Vajtai, Pulickel M. Ajayan en Enrique V. Barrera, Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals, Nature Scientific Reports (2011)
2. Can Carbon Nanotubes Replace Copper?, Assembly magazine, 2016
3. George Slenski, Replacement of copper wiring with carbon nanotubes in aerospace applications, 2019
4. Danielle Szatkovski, How do you replace all that copper wiring, Automotive News, 2019

Koolstof nanovezels breken alle sterkterecords en zullen voor de volgende industriële revolutie zorgen.

De verpletterende koolstofrevolutie

Eén enkel chemisch element kan een groot aantal ooit als strategische mineralen beschouwde materialen vervangen en zal de basis vormen voor de volgende industriële revolutie. Ideeën en energie worden belangrijker dan ooit, want dit wondermateriaal is letterlijk overal voor het grijpen.

Koolstof nanovezels breken alle sterkterecords en zullen voor de volgende industriële revolutie zorgen.
Koolstof nanovezels breken alle sterkterecords en zullen voor de volgende industriële revolutie zorgen.

Koolstof tot voor kort alleen ‘organisch’ materiaal
Koolstof vormt letterlijk de ruggengraat van het leven. Suikers en zetmeel bestaan uit koolhydraten – een ‘rups’ van koolstofatomen of van groepjes koolstofatomen. Ook eiwitten en vetten bestaan voor een groot deel uit koolstof. Opmerkelijk genoeg was dat in het dagelijks leven tot voor kort anders. Elektrische stroom loopt door koperdraden. Onze auto’s bestaan uit metaalplaat. Onze huizen zijn gebouwd van baksteen en beton.

Enkele ontdekkingen aan het einde van de twintigste eeuw en vlak daarna hebben dat laatste ingrijpend veranderd. Verschillende typen koolstofverbindingen hebben namelijk bepaalde materiaaleigenschappen die die van alle andere materialen voorzover bekend overtreffen. Een overzicht in het kader.

Buckey balls
De allereerste (in 1985) ontdekte bijzondere vorm van koolstof. Het molecuul buckminsterfullereen heeft alles weg van een moleculaire voetbal, waarbij de ruimtes tussen de koolstofatomen de vlakken van de voetbal vormen. De kogeltjes bleken keihard en zijn in staat bijvoorbeeld radioactieve atomen of andere moleculen te transporteren.

Koolstofnanobuisjes
Bij nader onderzoek in 1991 bleken zich nog veel interessantere structuren te vormen als met een vlamboog buckyballetjes werden geproduceerd: koolstofnanobuisjes, die veel weg hebben van langgerekte buckyballs.

Deze nanobuisjes kennen de grootste treksterkte van alle bekende materialen: in theorie 150 GPa, in de praktijk 60 GPa. Dit laatste getal betekent dat een draadje van een vierkante millimeter doorsnede zes ton aan gewicht kan dragen. Dat is een complete mannelijke Indiase olifant. Een draadje zo dik als een gemiddelde mensenhaar kan ongeveer een mens dragen. Hiermee worden staal en kevlar met twee ordes van grootte geklopt. Er bestaan ook dubbelwandige koolstofnanobuisjes, die deze eigenschappen nog iets overtreffen.

Mede wanneer ‘gedoopt’ met andere materialen, kunnen koolstofnanovezels ook goed stroom geleiden– waarbij ze koper zelfs overtreffen.

Grafeen
In feite vormen koolstofnanobuisjes opgerolde stukken grafeen. Grafeen heeft het meeste weg van zeshoekig kippengaas, waarbij de koolstofatomen zeshoeken vormen. We produceren bijna iedere dag grafeen, als we schrijven met een grafiet potlood en de laagjes grafeen afschilferen. De unieke eigenschappen van grafeen werden ontdekt door de naar Nederland geïmmigreerde Andrej Geim, waarvoor hij met twee anderen de Nobelprijs natuurkunde kreeg.

Geen wonder. Ook dit materiaal is ongeveer even sterk en licht als koolstofnanovezel, dus ook weer honderd keer zo sterk als staal. Een laagje grafeen is één atoom dik. Ook grafeen is een extreem goede elektrische geleider – bij kamertemperatuur in theorie zelfs beter dan zilver. Als dit materiaal op grote schaal in vliegtuigen of op de weg wordt gebruikt, zou dat de helft of meer van het brandstofverbruik schelen. Ook zou het vliegtuig beschermd zijn tegen bliksem door de kooi van Faraday die het materiaal vormt. Bijna iedere dag worden nieuwe toepassingen bedacht voor dit wondermateriaal.

Bulkallotropen
De bekendste bulkallotroop van koolstof is uiteraard diamant. De laatste jaren zijn er steeds meer methodes ontdekt om op grote schaal kunstdiamant te maken. Worden deze methodes fors opgeschaald zonder dat er energievretende productiemethoden nodig zijn, dan betekent dat onder meer onbreekbare ruiten, krasvaste brillenglazen en nog veel meer.
Daar blijft het niet bij. Koolstofkristallen die afwijken van diamant blijken bijzondere eigenschappen te hebben die ze voor andere toepassingen interessant maakt.

Koolstof ideaal voor 3D-printers
Fabrikanten van 3D-apparatuur zagen deze ontwikkeling al aankomen en zijn nu in hoog tempo bezit om koolstofmaterialen in hun apparatuur in te bouwen. Het vergt weinig betoog waarom. Grafeen kan je in feite atoomlaagje voor atoomlaagje op elkaar leggen. Koolstofnanovezels zijn een goed alternatief voor metalen geleiders. De kans is dus zeker aanwezig dat je nieuwe televisie wordt geprint in de winkel terwijl je wacht.

Koolstof overal voor het grijpen
We zeiden het al: koolstof is letterlijk overal om ons heen. letterlijk voor het grijpen. In de lucht bijvoorbeeld, in de vorm van kooldioxide, waar er volgens broeikaspessimisten veel te veel van is. In de vorm van steenkool zijn er onafzienbare voorraden onder de grond. Biomassa, kalksteen, carbonaten opgelost in zeewater – noem maar op.

Kortom: de angsten van de Club van Rome en onze gewaardeerde collega’s van Cassandra Club over het uitgeput raken van metalen blijken vermoedelijk onterecht. In feite zijn onze problemen te herleiden tot een energieprobleem. Dus laten we daar snel wat aan gaan doen in plaats van ons druk te maken over onbelangrijke bijzaken.