‘Zwart gat bevat Planck-ster’
In zwarte gaten bevindt zich een punt van oneindige dichtheid, waar de natuurwetten eindigen. Zegt althans de algemene relativiteitstheorie. Onzin, zeggen enfant terrible natuurkundige Carlo Rovelli en collega Francesca Vidotto van de universiteit Nijmegen. In plaats daarvan vormt zich de ultieme barrière, de planckster.
Hoe ontstaat een zwart gat?
Onze aarde stort niet in tot een zwart gat. De reden is dat materie door kwantumeffecten zijn structuur behoudt. Deze kwantumeffecten overwinnen vereist een enorme druk. Een druk, die in het binnenste van de aarde niet gehaald wordt, maar wel in ineenstortende sterren. Er zijn in feite meerdere stadia in het samendrukken van materie, die we hieronder zullen noemen.
In het eerste stadium wordt materie zo dicht op elkaar geperst dat atomen verdwijnen en de materie degenereert, verandert in een “elektronenvloeistof”, waarin atoomkernen omgeven worden door elektronen met een snelheid in de buurt van de lichtsnelheid. Elektronenvloeistof is zeer dicht: een theelepeltje weegt ongeveer een ton. Witte dwergen, het vermoedelijke eindstadium van de zon, bestaan uit deze elektronenvloeistof.
Als de druk verder toeneemt, wat het geval is boven de Chandrasekharlimiet van 1,4 zonsmassa, wordt ook de elektronenvloeistof gekraakt. De enorme druk maakt dat het energiegunstiger is voor elektronen en protonen om te fuseren tot neutronen: neutronium. Neutronium is ongeveer zo dicht als atoomkernen. Een theelepel neutronium weegt zoveel als een berg, of een complete stad. Neutronensterren, die wij waar kunnen nemen als pulsars, bestaan uit neutronium. De complete massa van een ster van enkele zonsmassa’s is dan samengebald in een bolletje van ongeveer twintig kilometer doorsnede. De Schwarzschildradius van deze massa is negen kilometer, niet veel kleiner dus. Er is inderdaad niet veel meer nodig om een neutronenster in elkaar te laten storten tot een zwart gat.
Nu naderen we de grens van de bekende kennis. Natuurkundigen denken dat er nog een verdere fase is: de quarkster. Ook neutronen bestaan namelijk uit samenstellende deeltjes, de quarks. Neutronen kunnen nog verder samengeperst worden tot ook zij degenereren en er een quark-gluonplasma ontstaat. Deze natuurkunde is nog slecht begrepen, omdat we deze omstandigheden alleen zeer moeizaam, in de Large Hadron Collider, kunnen nabootsen.
Op een gegeven moment komt er een fundamentele limiet, waarop de zwaartekracht zo hoog wordt dat zelfs licht niet meer kan ontsnappen. Er vormt zich een waarnemingshorizon en een zwart gat is geboren. Volgens de heersende theorieën is de zwaartekracht nu zo allesoverheersend dat niets de ineenstorting tot een enkel punt van oneindige dichtheid, de singulariteit, meer kan stoppen.
Een singulariteit is een rechtgeaarde natuurkundige een gruwel. Dat is namelijk een punt waarop de natuurwetten niet meer opgaan. Zie deze video.
Planckster
Volgens Rovelli is er een fundamentele limiet aan dichtheid, die te maken heeft met ruimtetijd zelf. Als een ster ineenstort tot het volume van een atoomkern, wordt de Planckdichtheid bereikt. Dit is c5/hG2, rond de 1093gram per kubieke centimeter. De dichtheid van het heelal na het verstrijken van de Plancktijd van 10-43 seconde. Dit zorgt voor een sterk afstotend effect. Het gevolg is dat de ster “terugveert” in een fractie van een seconde. Door de extreme tijdsvertraging in de buurt van zwarte gaten, lijkt dit proces voor een waarnemer buiten het zwarte gat vele miljarden jaren te kosten. Door Hawkingstraling is het zwarte gat dan al aan het verdampen. Rovelli denkt dat op deze manier zwarte gaten van voor de Big Bang het hebben kunnen overleven.
Stof om na te denken. Dit artikel dateert van 2014, maar ondertussen zijn m.b.v. de zwaartekrachtsgolfdetector LIGO zwarte gaten van plm. 30 zonsmassa’s aangetroffen. Dit zouden goed primordiale zwarte gaten kunnen zijn. Uit een periode van voor de Big Bang?
Bron
Carlo Rovelli en Francesca Vidotto, Planck Stars, ArXiv (2014)