Een wormgat laat je doorsteken naar een ander deel van het heelal. Bron: Hong Kong Space Museum

Door een wormgat naar het Andromedastelsel

Wormgaten blijken toch mogelijk. Althans, dat is wat een groep fysici uit Duitsland en Griekenland heeft laten zien. Dit zelfs zonder de exotische negatieve energie. Wanneer kunnen we een reisje naar bijvoorbeeld het spectaculaire Hoags Object boeken?

Wat zijn wormgaten?
Ze vormen één van de wiskundige oplossingen van de differentaalvergelijking die de algemene relativiteitstheorie vormt: wormgaten. Zo ontdekte de Oostenrijkse fysicus Ludwig Flamm in 1916 al. Dus kunnen ze in theorie bestaan. Wormgaten, ook bekend als wormtunnels, zijn een soort dwarsverbindingen die ver van elkaar  gelegen punten in ruimtetijd met elkaar verbinden. Zo zou er een wormgat kunnen bestaan dat bijvoorbeeld ons zonnestelsel met het stelsel van de ster Wega verbindt. We zouden dan in zeer korte tijd de tientallen lichtjaren die ons van Wega scheiden kunnen doorkruisen. Tot nu toe wil het echter niet echt opschieten met het bouwen van – of zelfs ontdekken van – een wormgat.  Logisch ook. Volgens de huidige theoretische stand van zaken heb je namelijk materie met negatieve energie nodig om een wormgat open te houden. Dat is volgens de huidige stand van de natuurkunde onmogelijk. Er bestaan voorzover we weten geen deeltjes met een negatieve energie (al zijn er onderdelen van kwantumvelden met een negatieve energie; ook het Casimireffect wordt door negatieve energie veroorzaakt).

Een wormgat laat je doorsteken naar een ander deel van het heelal. Bron: Hong Kong Space Museum
Een wormgat laat je doorsteken naar een ander deel van het heelal. Bron: Hong Kong Space Museum

Wormgat creëren niet moeilijk
Nu is dit alles veranderd. Een groep natuurkundigen uit Duitsland en Griekenland heeft laten zien dat wormgaten kunnen worden geschapen zonder negatieve energie. Wat heet: zelfs zonder materie met positieve energie, aldus Burkhard Kleihaus van de universiteit van Oldenburg in Duitsland. “Wormgaten kunnen open worden gehouden met niets.”
Als dat zo is, is de kans groot dat er al wormgaten actief zijn, gebouwd door buitenaardse wezens. Ons heelal zou wel eens op gatenkaas kunnen lijken, doorsneden met een dicht metronetwerk van wormtunnels die verre sterrenstelsels met elkaar verbinden. Misschien dat we ze zelfs kunnen gebruiken om naar een ander, jong, universum te ontsnappen als dit universum op het punt staat ten gronde te gaan.

Wormtunnel naar een ander universum en ons eigen heelal
In 1935 werkte Einstein met collega Nathan Rosen een wormgat uit, bestaande uit twee zwarte gaten waartussen een tunnel door ruimtetijd bestond. Reizen door hun wormgat kon echter alleen als de zwarte gaten geen waarnemingshorizon hadden. De vergelijkingen van Einstein en Rosen voorspelden nog iets vreemds: de wormtunnel kwam uit in een ander heelal. iets wat in die tijd voor onmogelijk werd gehouden. Nu zijn we daar niet meer zo zeker van. In 1955 toonde fysicus John Wheeler aan dat het volgens de algemene relativiteitstheorie ook mogelijk is om twee delen van ons heelal door middel van een wormgat met elkaar te verbinden.

Stabiel wormgat vraagt compleet melkwegstelsel
Helaas blijken al deze wormgaten instabiel. Stuur ook maar een enkel foton door een wormgat en er vormt zich ogenblikkelijk een waarnemingshorizon, die het wormgat afsluit. Dankzij astronoom Carl Sagan, die voor zijn SF-roman Contact een snelle, wetenschappelijk verantwoorde transportmogelijkheid nodig had om de hoofdpersonen naar de aliens te kunnen sturen, is er nu toch een oplossing. Sagan vroeg theoretisch fysicus Kip Thorne om hulp. Deze visionaire vraag sprak Thorne sterk aan en met twee studenten,  Michael Morris en Uri Yertsever vond hij een oplossing: negatieve energie. Negatieve energie heeft namelijk volgens de algemene relativiteitstheorie een afstotende vorm van zwaartekracht, die de mond van het wormgat open drukt.

Er was alleen een probleempje. Om een enkel Thorne-Morris-Yertsever wormgat, groot genoeg om een person doorheen te sturen, open te drukken, heb je de energie (in negatieve vorm) nodig die een stevig dwergsterrenstelsel in een jaar uitzendt.

Wat als Einstein geen gelijk heeft?
De laatste jaren zijn er de nodige twijfels gerezen over het gelijk van Einstein in extreme omstandigheden. Zo slaat de algemene relativiteitstheorie op tilt in het centrum van een zwart gat. Er ontstaat dan een singulariteit. Ook blijkt kwantummechanica incompatibel met de algemene relativiteitstheorie. Zou Einsteins theorie (net als die van Newton) een benadering zijn van een dieper gelegen theorie? Veel fysici denken dit.

Meer dan drie dimensies plus tijd
Als er meer dan drie ruimtedimensies plus één tijddimensie zijn, verdwijnen deze beperkingen in enkele gevallen. In 2002 ontdekten de Rus Kirill Bronnikov en zijn Koreaanse collega-fysica  Sung-Won Kim de mogelijkheid van een wormgat zonder exotische materie (Physical Review D, vol 67, p 064027). In een ‘braanwereld’ variant zwaartekrachtstheorie, die ons heelal beschrijft als een vierdimensionaal eiland dat zweeft in hogere dimensies, blijkt er een enorme variatie aan mogelijke wormgaten – van allerlei groottes – voor te komen. Dit zonder spookmaterie. Er is alleen één maar. Er is nog steeds geen experimenteel bewijs voor de snaartheorie, waar deze theorie deel van uitmaakt. Ook deze theorie is uiterst ingewikkeld en onhandelbaar.

Eenvoudig alternatief voor de snaartheorie
Kleihaus, collega Jutta Kunz van dezelfde universiteit van Oldenburg en Panagiota Kanti van de universiteit van Ioannina in Griekenland werken aan eenvoudiger, gemakkelijker te hanteren uitbreidingen van de algemene relativiteitstheorie. De allereenvoudigste: dilatonic Einstein-Gauss-Bonnet theory (DEGB theorie). In deze theorie zijn de hogere dimensies “opgerold” in nanoformaat. Dit verklaart waarom we in het dagelijks leven slechts vier dimensies waarnemen. Hierdoor ontstaan verschillende nieuwe krachtvelden, waaronder het zogeheten dilatonveld. In DEGB hangt zwaartekracht niet alleen af van de kromming van ruimtetijd zelf, maar ook de kromming tot een hogere macht. Als deze extra krommingsterm wordt toegevoegd aan de zwaartekrachtsvergelijking, ontstaat er een oplossing voor een wormgat, dat niet met negatieve energie (of wat voor energie dan ook) opengehouden hoeft te worden. Er is een maar: ook deze theorie is nog niet onderbouwd door experimentele toetsing.

Uitzetting heelal kan wormgaten hebben opgeblazen
Volgens Wheeler (we zagen hem al voorbij komen) vormen zich voortdurend kleine wormgaten in ruimtetijd als we afdalen tot de Plancklengte (1,6*10-35 m, vergeleken met een proton is dit even klein als een proton is, vergeleken met de aarde). Toen het heelal vlak na de Big Bang, in de inflatiefase, bliksemsnel uitzette, kunnen zich dergelijke wormgaten gevormd hebben, die met de snelle uitzetting van het heelal ook afstanden van lichtjaren gingen overbruggen. Kleihaus en zijn collega’s hebben de eigenschappen van dergelijke wormgaten uitgebreid onderzocht (arxiv.org/abs/1111.4049). Subatomaire deeltjes kunnen zonder problemen ook door kleine wormgaten reizen, maar voor een groot object als een mens is een doorsnede van tientallen tot honderden lichtjaren vereist om de reis te overleven.

Op wormgatenjacht met de telescoop
Het goede nieuws is dat wormgaten van deze grootte gemakkelijk waar te nemen zijn. Een wormgat betekent dat er een abrupte verstoring van het patroon van achtergrondsterren optreedt. Immers: de muil van een wormgat biedt een blik op een ander heelal, aldus Kleihaus. Althans: in theorie. Wormgaten hebben namelijk in de praktijk veel weg van zwarte gaten, zeker als ze door stofsluiers worden verborgen. Echter: juist dit stof biedt een bruikbare methode om wormgaten te onderscheiden van zwarte gaten. Een wormgat kent immers geen waarnemingshorizon. Dat betekent dat waar de röntgenstraling van invallend stof plotseling wordt afgekapt (als het de waarnemingshorizon passeert), dat in een wormgat niet gebeurt. Op dit moment is een samengestelde radiotelescoop in aanbouw, de Event Horizon Telescope, die groot genoeg is om het dichtsbijzijnde reuzenzwartegat, Sagittarius A* in het centrum van de Melkweg op 26 000 lichtjaar afstand, in detail waar te nemen. Misschien zijn alle zwarte gaten in de centra van melkwegstelsels wel de uiteinden van wormgaten.

Met de dichtstbijzijnde sterren op ‘slechts’ vier lichtjaar afstand, is onze kosmische buurt geen geschikte plaats om een gerieflijk wormgatstation te vestigen. Dat is uiteraard anders voor de onafzienbare leegte tussen de melkwegstelsels. Zouden aliens al een druk intergalactisch metronetwerk in gebruik hebben?

Bron
Intergalactic subway: All aboard the wormhole express, NewScientist (2012)