vloeistofdynamica

De druppel wordt naar binnen gezogen. Antizwaartekrachtspomp?

Video: antizwaartekrachtspomp ontwikkeld

Kesong Liu van de Beihang Universiteit in de Chinese hoofdstad Beijing ontwikkelde met zijn team dit opmerkelijke apparaat, dat alle wetten van de natuurkunde lijkt te tarten.

De “antizwaartekrachtspomp” werkt door een netwerk van koperdraden, behandeld met alkalische oplossing zodat zich kleine gasbellen vormen. Als gevolg daarvan wordt het oppervlak extreem waterafstotend. Als een druppel die onder het netwerk wordt geplaatst naar boven wordt gezogen, door de oppervlaktespanning van water, wordt de vloeistof er boven als het ware naar boven geperst. Het systeem kan water niet verder dan een centimeter omhoog transporteren, maar is vermoedelijk erg nuttig voor labs on a chip.

Het systeem lijkt de wet van behoud van energie te schenden, maar vergeet niet dat water in een druppel, vooral een kleine druppel, energetisch ongunstiger is dan een bak water. Die energie komt vrij en drukt het water omhoog. Wat omlaag valt is een grote druppel.

De druppel wordt naar binnen gezogen. Antizwaartekrachtspomp?
De druppel wordt naar binnen gezogen. Antizwaartekrachtspomp?

Bron
Kesong Liu et al., Superhydrophobic “Pump”: Continuous and Spontaneous Antigravity Water Delivery, Advanced Functional Materials, 2015

Waar kogels wel kevlar kunnen doorboren, absorbeert de non-Newtoniaanse vloeistof rond de Kevlar zoveel energie dat de kogel wordt afgeweerd. Bron: University of Delaware

Vloeistof beschermt tegen kogels

Op zoek naar een effectieve bescherming tegen kogels en dergelijke? Vergeet massief kevlar, koolstofvezels en dergelijke. In veel gevallen is vloeistof veel effectiever. Non-newtoniaanse vloeistoffen om precies te zijn. Wat is hun geheim?

Meter water houdt kogels tegen
We kennen allemaal de scenes in bijvoorbeeld James Bond films waarin de rokkenjagende held een duik onder water neemt om te ontsnappen aan een kogelregen. Volgens het gezonde verstand lijkt een dunne laag vloeistof om je te beschermen tegen een projectiel met een snelheid van kilometers per seconde weinig effectief. Schijn bedriegt echter. Al een meter vloeistof is voldoende om het projectiel af te remmen tot een ongevaarlijke slakkengang. De reden: de weerstand in een vloeistof neemt toe met het kwadraat van de snelheid en in tegenstelling tot een vaste stof kan een vloeistof niet scheuren. Dus dumpen de kogels hun energie snel. Dus word je beschoten door een bende agressieve booswichten, dive, dive, dive.

Vloeistofremmen en kleverige lijm
Newtoniaanse (standaard) vloeistoffen, zoals water, gedragen zich bij benadering net zo bij hoge als bij lage snelheden. Om het gedrag van een klassieke vloeistof te begrijpen, hoef je alleen de soortelijke massa en de viscositeit (stroperigheid) te kennen. In principe kan je hiermee al behoorlijk wat remmende werking bereiken.

Zo is een heel belangrijk principe in de vloeistofdynamica de zogeheten no-slip randvoorwaarde. Dat betekent dat de snelheid van de vloeistof aan de rand van een buis of oppervlak in het  algemeen altijd nul is. In vloeistofremmen wordt hier handig gebruik van gemaakt om interne wrijving op te wekken  zonder dat de remvoering slijt. Een vloeistofrem bestaat uit twee parallelle oppervlakken (meestal schijven of trommels) met een laag remvloeistof er tussen. Deze bewegen tegen elkaar in.  De remenergie wordt bij het remmen zo in de vloeistof gedumpt. In tegenstelling tot rubber en andere remmaterialen kan vloeistof niet scheuren, dus gaan vloeistofremmen veel langer mee.

Lijmen met stroop
Een geliefde toepassing van zeer stroperige vloeistoffen, bijvoorbeeld pek en bitumen,  is ze gebruiken om mee te lijmen. Ook hier zorgt de no-slip conditie voor een lijmeffect. De stroomweerstand is door het extreem dunne laagje vloeistof tussen de twee gelijmde oppervlakten zo hoog, dat  de dikke vloeistof een effectieve lijm vormt.

Waar kogels wel kevlar kunnen doorboren, absorbeert de non-Newtoniaanse vloeistof rond de Kevlar zoveel energie dat de kogel wordt afgeweerd. Bron: University of Delaware
Waar kogels wel kevlar kunnen doorboren, absorbeert de non-Newtoniaanse vloeistof rond de Kevlar zoveel energie dat de kogel wordt afgeweerd. Bron: University of Delaware

Pantser van slappe vezels en stroop 
In bepaalde lichaamspantsers worden beide ideeën tegelijkertijd gebruikt. Het probleem met kogels en scherven is niet de hoeveelheid energie, maar dat die energie op een kleine plek geconcentreerd is. De truc is dus om die energie te verspreiden. Een eenvoudige techniek om de effectiviteit van aramideweefsel en kevlar drastisch te verhogen,  is tussen de laagjes vezel vloeistof aan te brengen. Alle energie van de kogel gaat zitten in het langs elkaar trekken van de laagjes aramide waardoor de gelukkige drager de dans omspringt. De effectiviteit wordt drastisch verhoogd met een non-Newtoniaanse vloeistof. Het hier gebruikte type non-Newtoniaanse vloeistof verandert in een vaste stof bij een snelle inslag. De resukltaten zijn dan ook indrukwekkend. Een laaggewicht lichaamspantser beschermt toch tegen zware scherven en munitie. Geen wonder dat het Amerikaanse leger deelnam aan dit onderzoek van de universiteit van Delaware.

Bron
Shear Thickening Fluids – University of Delaware