waterijs

IJs-XI is door zijn zeer regelmatige kristalvorm sterk ferroelektrisch.

‘Elektrisch ijs leidde tot vorming planeten’

Het ijs dat wij uit de vriezer en de Elfstedentocht kennen is elektrisch neutraal. Er zijn echter vele anderen soorten ijs, waaronder elektrisch ijs, ijs-XI. Deze vreemde vorm van water is veel taaier en komt veel meer voor dan tot nu toe gedacht en kan wel eens een belangrijke rol hebben gespeeld in de manier waarop ons zonnestelsel zich heeft gevormd. En, nog interessanter, zelfs leven.

Herbergt Antarctica behalve miljoenen pinguïns, ook elektrisch ijs?
Herbergt Antarctica behalve miljoenen pinguïns, ook elektrisch ijs?

Elektrisch ijs-XI bij zeer lage temperaturen op Antarctica?
Zuurstof trekt elektronen veel sterker aan dan waterstof. Een enkel molecuul water kent een positieve kant – de waterstofkant – en de negatieve zuurstofkant. Dit maakt water één van de merkwaardigste substanties in het universum. Zo zijn er meer dan tien verschillende soorten ijs. Het ijs dat we uit het dagelijks leven kennen, ijs-1h, is zo geordend dat de waterstofatomen random door elkaar zijn geplaatst. Als gevolg hiervan is ijs elektrisch neutraal. Als ijs wordt afgekoeld tot een ijzige zestig kelvin (-213,15 graden Celsius), dan gaan de waterstofatomen zich netjes in een regelmatig patroon schikken. In dit perfect regelmatige kristal, onder wetenschappers bekend als ijs-XI of elektrisch ijs, zijn er duidelijke gebiedjes met positieve en negatieve lading.

Door die polarisatie klontert ijs-XI veel sneller samen dan ‘normaal’ ijs, namelijk door statische elektriciteit. Als het vroege zonnestelsel veel ijs-XI bevatte, zouden planetenbeginsels veel sneller gegroeid zijn dan tot nu toe voor mogelijk wordt gehouden. Elektrische aantrekking is bij kleine objecten namelijk vele ordes van grootte sterker dan zwaartekrachtsaantrekking. Ook kan elektrisch ijs organische verbindingen aantrekken, wat tot het ontstaan van complexe moleculen en uiteindelijk leven kan leiden. Sommigen beweren dat op Antarctica dit elektrische ijs voorkomt, maar deze claim is omstreden. Wel zijn astronomen er van overtuigd dat het geheimzinnige goedje veel voorkomt in de cryogene leegten van de Kuipergordel en de Oortwolk.

IJs-XI laat zelfs na ‘smelten’ tot gewoon ijs geheugenafdruk achter

IJs-XI is door zijn zeer regelmatige kristalvorm sterk ferroelektrisch.
IJs-XI is door zijn zeer regelmatige kristalvorm sterk ferroelektrisch.

In 2006 produceerden Masashi Arakawa en zijn collega’s ijs-XI in het lab bij een temperatuur tussen de 57 en 66 kelvin. Dit zijn de temperaturen op de ijsreus Uranus en zijn manen. Dit temperatuurbereik is te klein om genoeg ijs-XI te hebben gevormd voor een belangrijke rol in de vorming van planeten. Althans: dat dacht men tot nu toe. IJs-XI blijkt veel taaier dan tot nu toe gedacht. Om te beginnen kunnen kleine stukjes ijs-XI grote hoeveelheden ‘normaal’ ijs in zichzelf omzetten. Arakawa’s groep koelde huis-tuin- en keuken ijs af tot zestig kelvin, waarna zich ijs-XI vormde. Ze verwarmden het daarna tot honderd kelvin zodat het weer in ‘normaal’ ijs veranderde. Daarna koelden ze het ‘gewone’ ijs weer af.

Nu gebeurde er iets vreemds.  IJs-XI vormde zich al bij 72 kelvin. Vreemd genoeg bleef standaardijs standaardijs bij 72 kelvin. Onderzoekers denken dat de oorzaak ligt in nanogebiedjes met ijs-XI die de hogere temperatuur overleven. Verdere experimenten toonden zelfs aan dat de nanogebiedjes overleven tot 111 kelvin. IJs-XI zou dus wel eens veel meer in de ruimte kunnen voorkomen dan tot nu aangenomen.

Erg snel gaat die omzetting overigens niet bij die extreem lage temperaturen. Zuiver waterijs kan er duizenden jaren over doen om omgezet te worden in ijs-XI. Arakawa speelde daarom vals met een natriumoplossing. Natrium komt niet erg veel voor in de ruimte, maar mogelijk kunnen ook andere, vaker voorkomende substanties als methaan of ammoniak de vorming van ijs-XI katalyseren. Tijd voor een volgend experiment dus…

Lees ook: Eendimensionaal elektrisch ijs geproduceerd, ‘Leven begonnen in ijs’

Bron:
New Scientist

Beschut in een diepe krater kunnen zich op Mars ijsafzettingen vormen.

IJs op Mars gevonden op tropische breedtegraden

De overlevingskansen voor een kolonie op onze buurplaneet Mars zijn met een nieuwe ontdekking aanzienlijk gestegen. Naar blijkt, bevindt zich in de gastvrijer tropische breedtegraden op Mars een grote hoeveelheid waterijs op enkele meters onder de oppervlakte. Dat is goed nieuws, want een winter op Mars in de buurt van de polen, waar het zo koud wordt dat zelfs kooldioxide verandert in sneeuw, is niet bepaald iets dat je graag mee wilt maken…

Zonder water geen leven
Ooit, miljarden jaren geleden, kende Mars grote oceanen.

Miljarden jaren geleden had Mars een enorme oceaan op het noordelijk halfrond.
Miljarden jaren geleden had Mars een enorme oceaan op het noordelijk halfrond.

Het hele noordelijk halfrond, nu bekend als Borealis Bassin, vormde een grote ondiepe oceaan. Ook nu nog zijn sporen van grote hoeveelheden waterijs rond de martiaanse noordpool aangetroffen. Water is essentieel voor leven. Er is geen enkele levensvorm bekend die het zonder water erg lang uithoudt, al zijn schijndoodtoestanden bekend die zeer lang kunnen duren. Kortom: plekken waar vloeibaar water aanwezig is, staan bovenaan het verlanglijstje voor buitenaards leven.

Tropen op Mars nu bewoonbaar
De mens is uiteraard geen uitzondering. De overlevingskansen voor een buitenaardse kolonie staan of vallen met de aanwezigheid van water in vloeibare of vaste vorm. Omdat het tot nu toe allerminst zeker was dat er water aanwezig was in de tropische gebieden op Mars gingen plannenmakers uit van de gevaarlijke, gure gematigde en poolstreken op Mars, waar het niet alleen erg koud is maar ook de weersomstandigheden snel en voortdurend intensief veranderen. De vermoedelijke ontdekking van grote ijsvoorraden in de tropen komt dus als geroepen.

Indirecte bewijzen
De aanwezigheid van ijs is afgeleid uit de aanwezigheid van kooldioxide-afzettingen op berghellingen in de tropen die gericht zijn op de dichtstbijzijnde pool. Kooldioxide slaat alleen neer als het op een bepaalde plaats extreem koud is, denk aan rond de zeventig graden onder nul bij aardse luchtdruk. Pas als de temperatuur hartje winter op Antarctica nog zeventig graden zou dalen tot -145 graden, zou  het overigens op Antarctica koolzuur gaan sneeuwen, dit door de lage CO2-dampdruk in de atmosfeer.

Waterijslaag houdt koolzuursneeuw ijskoud
De aanwezigheid van koolzuursneeuw op hellingen in de schaduw betekent dus dat de temperaturen hier ruim onder de honderd graden onder nul liggen.

Beschut in een diepe krater kunnen zich op Mars ijsafzettingen vormen.
Beschut in een diepe krater kunnen zich op Mars ijsafzettingen vormen.

Dat kan alleen door de aanwezigheid van een grote koudebuffer: de martiaanse atmosfeer voert in de zomer warmte aan van warmere gebieden,  die gebieden zonder de koudebuffer van waterijs snel zou opwarmen en dus de koolzuursneeuw zou laten smelten. In de tropen van Mars loopt de temperatuur hartje zomer namelijk op tot een paar graden boven het nulpunt.

Er zijn twee mogelijke verklaringen voor de koudebuffer: massieve rots en waterijs. Als het om massieve rots op enkele meters diepte zou gaan, zou de verdeling van CO2-afzettingen anders zijn dan nu het geval is. Ook zijn er geen sporen van de uniforme aanwezigheid van deze rotslaag gevonden. Er zijn grote rotsgebieden op Mars, maar deze vormen geen aaneengesloten geheel.  De conclusie van de onderzoekers is daarom dat een ijslaag verantwoordelijk is voor de eeuwige koolzuursneeuw in de tropen.

Leven op Mars?
Dit maakt de vooruitzichten om leven op Mars aan te treffen ook beter. Bekend is dat er in de Martiaanse zomer meer methaan vrijkomt dan in de winter. Methaan kan uit vulkanisme afkomstig zijn, maar is vaak een bijproduct van bacteriële activiteit. Als er in de tropen grote hoeveelheden ijs in de Martiaanse bodem zitten, kan dit mogelijk smelten in de zomer en hiermee bacteriën uit hun winterslaap wekken.

Bronnen:
Arxiv Blog
ArXiv