batterij

De zoutwaterlamp belooft Filippijnse slachtoffers van stormen licht en stroom voor smartphones te leveren.

‘Zoutwaterlamp’ werkt op alleen zout water

Aisa en Ralph Mijeno, broer en zus uit de Filippijnen, ontwikkelden een lamp die werkt op zout water. De lamp kan bij worden gevuld met zeewater en kan ook worden gebruikt om smartphones op te laden. Ideaal tijdens een ramp. Hoe werkt deze lamp?

De zoutwaterlamp belooft Filippijnse slachtoffers van stormen licht en stroom voor smartphones te leveren.
De zoutwaterlamp belooft Filippijnse slachtoffers van stormen licht en stroom voor smartphones te leveren.

De lamp is, in de woorden van broer en zus Mijeno, een elektrochemische LED-lamp die kan worden gebruikt om kleine mobiele gadgets op te laden.

Op de site van hun startup, of in interviews, is geen informatie te vinden hoe deze lamp precies werkt. Alleen dat de lamp om de acht uur bijgevuld moet worden met vers zeewater. Zeewater is chemisch in evenwicht, dus moet het aan de ‘anode’, waarnaar veelvuldig wordt verwezen, liggen.

Maak je eigen zoutwaterlamp
Vernuftige Youtube-gebruikers hebben een doe-het-zelf zoutwaterlamp ontwikkeld op basis van aluminiumfolie en koperfolie, zie video onder. Voor wie liever een uitgeschreven instructie gebruikt, of geen koperfolie heeft, is er een soortgelijke instructie van het Practical Education Network van MIT. De MIT-versie is wel omslachtiger, omdat de spanning per cel lager is en er dus meer cellen nodig zijn om het ledje te laten branden.

Vermoedelijk is een anode (negatieve pool, waar de elektronen uitkomen) van aluminium en een kathode (positieve pool die de elektronen opslokt. Elektronen zijn negatief geladen) van koper of een dergelijk halfedelmetaal ook het geheim van de wonderlamp. Dit aluminium, of een soortgelijk metaal zoals zink, gaat langzaam in oplossing en moet na enkele maanden vervangen worden. Het zeewater zelf wordt niet verbruikt, maar raakt verzadigd met aluminiumzouten. Daarom moet het na acht uur vervangen worden. Hieronder een korte video met instructies.

Bron
salt.ph

Thermofotovoltaïsche cel: zonnecel zonder zon

Een thermofotovoltaïsche cel werkt puur op warmte, waardoor elektriciteit wordt opgewekt zonder dat er zonlicht bij betrokken is. Hoewel het principe dat wordt gebruikt – het oppervlaktemateriaal zo aanpassen dat alleen bepaalde golflengtes straling worden uitgezonden – niet nieuw is, is dit systeem veel efficiënter dan vorige incarnaties. De opvolger voor de brandstofcel?

In het kort
Het geheim van het systeem: een materiaal met ontelbare gaatjes op nanoschaal (tientallen tot honderden atomen breed dus) op het oppervlak. Als het materiaal warmte absorbeert van welke bron dan ook – de zon, fossiele brandstof, radioisotoop of een andere energiebron – straalt het oppervlak vooral energie uit in de golflengtes die de kuiltjes toelaten.
Onderzoekers van het MIT zijn er op die manier in geslaagd om een krachtcel die werkt op butaan te bouwen. Deze krachtcel gaat drie keer langer mee dan een even zware lithium-ion batterij; het apparaatje kan direct worden “opgeladen” (door er een nieuw brandstoftankje in te doen). Een ander apparaat, waarbij de energie wordt geleverd door een radioactieve stof,  kan dertig jaar achter elkaar energie blijven leveren – een ideale krachtbron dus voor ruimtevaartuigen die onderweg zijn naar de donkere, koude buitenste regionen van het zonnestelsel.
thermofotovoltaïsche cel
Zo werkt een thermofotovoltaïsche cel. Warmte wordt omgezet in infraroodstraling, die wordt omgezet in elektriciteit. Bron: aangepast van origineel

Verliezen bij warmteomzetting kost heel veel energie
Ongeveer 92% van al ons energieverbruik houdt op de een of andere manier omzetting van warmte in elektriciteit of voortbeweging in. Kolen- en gascentrales, zelfs kerncentrales werken zo. Ook onze auto’s werken met een verbrandingsmotor waarbij het hete verbrandingsgas uitzet en de motor aandrijft.
Erg efficiënt gaat dat niet. Alleen de warmte die vrijkomt door temperatuursverschillen is af te tappen als vrije energie. Je bent dan namelijk gebonden aan de beperkingen van de thermodynamica, waardoor zelfs bij een volmaakte generator maar een beperkt deel van de energie in elektriciteit is om te zetten. Kortom: zouden we een andere manier hebben om warmte te oogsten, dan zou dit wel eens heel veel vrije energie kunnen opleveren. Vooral als het op klein schaal kan, want vooral kleine omzetters gaan erg spilzuchtig te werk.

Zonnepaneel op warmte
Thermofotovoltaïsche cellen, zonnecellen die werken bij op infrarood (warmtestraling) in plaats van licht, bestaan al een halve eeuw. Een brandend stuk hout, bijvoorbeeld, verhit een materiaal, de zogeheten thermische emitter. Dit roodgloeiende materiaal straalt warmte en licht op de zonnecel, die elektriciteit levert. Uiteraard bevat het roodgloeiende licht veel meer rood licht en warmtestraling dan zonlicht en er is dan ook een speciaal type zonnepaneel voor nodig (dat de zwakkere fotonen van infraroodstraling kan vangen) om dit om te zetten in elektriciteit. Desondanks wordt nog steeds veel warmtestraling niet omgezet waardoor de efficiëntie laag blijft.

zwarte straler spectrum
Dit vloeiende spectrum is van een zwarte straler. Door dit spectrum te veranderen in een paar pieken, worden zonnecellen veel efficiënter, want die hoeven alleen de pieken te kunnen vangen. Bron: User:Darth Kule op Wikimedia Commons, public domain

Het geheim: laat het voorwerp alleen bepaalde golflengtes uitzenden
Een volledig zwart voorwerp gedraagt zich qua straling precies volgens het boekje, dat wil zeggen: volgens de stralingswet van Wien en Planck. Hoe heter het voorwerp, hoe meer en hoe energierijker fotonen het uitzendt. De straling komt in een vloeiend spectrum vrij. Natuurlijke stralingsbronnen, van de zon tot de mens, gedragen zich doorgaans als deze zogeheten zwarte stralers.

Het zou uiteraard handig zijn een stralingsbron te hebben die alleen golflengtes uitzendt die de zonnecel kan verwerken. Dat zou de zonnecel veel efficiënter maken.Dus bijvoorbeeld: een stuk gloeiend metaal dat alleen groen opgloeit. Een zonnecel die extreem gevoelig is voor groen licht zou dan een enorm hoog rendement kunnen behalen, zonder dat je je hoofd hoeft te breken over manieren om andere golflengtes te vangen, zoals zonnecelmakers nu moeten doen.

Het fundamentele probleem bij zonnecellen
In een zonnecel krijgt een elektron een oplawaai door een foton, maakt een sprong en vloeit dan weer terug terwijl het zijn energie afgeeft. Is het foton te zwak, dan kan het elektron niet over de barrière springen. Is het foton te sterk, dan springt het elektron wel, maar de extra energie van het foton gaat verloren. Beide effecten maken efficiënte zonnepanelen maken zo ingewikkeld.

Maar hoe vind je een dergelijk materiaal? Het antwoord: maak een foto-aktief kristal door het oppervlak zo te bewerken (bijvoorbeeld met zeer kleine putjes of richels)  dat licht op een heel andere manier door het voorwerp beweegt.

En dat is wat het team deed. Ze namen een stuk wolfraam – dat is een metaal met een extreem hoog smeltpunt (3410 graden), daarom gebruiken ze het voor gloeidraadjes in een gloeilamp – en bedekten het oppervlak met miljarden kleine putjes. Als het stuk bewerkte wolfraam heet wordt, geeft het helder licht dat sterk afwijkt van het emissiespectrum van een zwart lichaam. De reden: de putjes dwingen fotonen als het ware een bepaalde golflengte te krijgen. Andere golflengtes passen niet in de putjes.

Elektriciteitscentrale zo groot als een knoop

De knoopvormige micro-energiecentrale gebruikt koolwaterstoffen als propaan en butaan (kampeerders welbekend als camping gas). Het ding staat ondertussen bekend als een micro-TPV power generator. De verbrandende koolwaterstoffen verhitten het wolfraam dat begint te gloeien in golflengtes, waar het zonnepaneel op berekend is. Per gewichtseenheid kan er drie keer zoveel elektriciteit uit worden geperst als uit een lithium-ion batterij. Ook gaat het opladen uiteraard erg makkelijk en snel: simpelweg een tankje verwisselen. Ideaal voor het leger. Zo kan de democratie in bijvoorbeeld het olierijke Libië weer worden ‘bevorderd’, want een zonnepaneeltje uitrollen schiet niet echt op als je met je radiozender snel wilt doorgeven waar bommenwerpers hun eitjes moeten leggen.

Ook voor burgers is het natuurlijk erg makkelijk je laptop of mobieltje maar een keer per week op te hoeven laden.
Of – het echte werk – bekleed je allesbrander met dit spul. Zo krijg je pas echt een hoge-rendementsketel. De grap is dat er geen speciale brandstof nodig is, alles wat maar kan branden en de brander niet verstopt kan er in.Volgens de bedenkers zijn er heel veel toepassingen van deze techniek mogelijk. Denk aan hybride auto’s. Wat zijn jullie ideeën?

Bron:
Sun free photovoltaics, Massachusetts Institute of Technology (2011)

Zo wordt de lithium-zwavel batterij gefabriceerd. De techniek is ingewikkeld, maar belooft drie keer zo efficiënte batterijen. En dus elektrisch vervoer.

Lithiumdoorbraak: 3x zoveel capaciteit?

Om benzineauto’s te vervangen moeten batterijen drie keer zo goed worden als nu. Een team onderzoekers van Stanford lijkt precies dat voor elkaar te hebben gekregen. Door zwavel in te pakken hebben ze dit weerbarstige opslagmateriaal eindelijk getemd, zo lijkt het.

Lithium: goed, maar niet perfect
Lithiumaccu’s zijn alomtegenwoordig. Dat is niet voor niets. Het zeer lichte metaal – lithium blijft op water drijven, even afgezien van de steekvlam – kent één van de hoogste energiedichtheden zoals bekend. Geen worden dus dat lithiumaccu’s zich in vrijwel alle telefoons, mp3-spelers en laptops bevinden. Helaas zijn lithiumbatterijen niet in staat om de volgende generatie elektrische auto’s voort te stuwen. Daarvoor is hun energieinhoud domweg te klein. Auto’s als de Tesla Roadster moeten werkelijk monsterachtige hoeveelheden lithiumaccu’s meezeulen om nog een beetje behoorlijke radius te hebben.

Kathodes zijn bottleneck voor lithium batterijen

Zo wordt de lithium-zwavel batterij gefabriceerd. De techniek is ingewikkeld, maar belooft drie keer zo efficiënte batterijen. En dus elektrisch vervoer.
Zo wordt de lithium-zwavel batterij gefabriceerd. De techniek is ingewikkeld, maar belooft drie keer zo efficiënte batterijen. En dus elektrisch vervoer.

Het probleem hierbij zit hem in de kathodes van de batterijen. Kathode is een technisch woord voor de negatieve pool, de plek dus waar elektronen zich ophopen. Anodes (de positieve polen) in lithiumbatterijen hebben indrukwekkende opslagcapaciteiten: 370 mAh per gram voor grafiet of zelfs 4200 Ah per gram voor silicium. Ter vergelijking: een AA batterijtje heeft 2,4 ampere-uur. De bottleneck is de kathode. De opslagcapaciteit van kathodes is vergeleken hiermee afgrijselijk slecht: 170 mAh/g for LiFePO4 en 150mAh/g voor gelaagde oxides. De ladingen moeten elkaar in evenwicht houden, dus betekent dat dat de kathodes de maximale capaciteit van batterijen beperken.

Zwavel: ideale kandidaat, maar grote nadelen
Het recept voor een betere lithium batterij is dus simpel: werk aan een beter kathodemateriaal terwijl de overige eigenschappen van de batterij, zoals energieefficiëntie en duurzaamheid bij opladen, behouden blijven. Hailiang Wang en zijn collega’s aan de Californische Stanford Universiteit zeggen dat ze dit doel hebben bereikt door zwavel als kathodemateriaal te gebruiken. Zwavel heeft een uitstekende energiedichtheid: in theorie 1672 mAh/g. Helaas zitten er aan zwavel een aantal nadelen. Onder meer dat zwavel een slechte geleider is, waardoor veel energieverlies door weerstand ontstaat. Ook is zwavel een nogal weerbarstig materiaal: polysulfides lossen op en wassen weg in veel elektrolyten en zwavel zelf heeft de neiging tijdens de ontlading uit te zetten, waardoor het verkruimelt.

Nano-engineering lost zwavelprobleem op
Wang en collega’s melden dat ze grotendeels deze problemen hebben overwonnen door een paar slimme nanotechnische trucs toe te passen om de performance te verbeteren. Hun truc is om zwaveldeeltjes kleiner dan een duizendste millimeter te maken en deze in het plestic PEG (polyethyleenglycol) in te pakken. Hierdoor worden de polysulfiden vastgehouden en kunnen ze niet weglekken. De anode bestaat uit silicium.

Dat is nog niet alles. De ingepakte zwaveldeeltjes worden in een grafeen-kooi opgesloten. De interactie tussen de koolstofatomen in het grafeen en zwavel maakt de deeltjes elektrisch geleidend en ondersteunt ook de deeltjes als ze zwellen en krimpen gedurende elke laadcyclus. Het resultaat is een kathode met een capaciteit van zeshonderd mAh/g die het honderd laadcycli volhoudt. Dat betekent dus meer dan een verdriedubbeling van de energiedichtheid.

Drie keer zoveel energie uit een batterij
Zeer indrukwekkend. Dat zou de actieradius van elektrische auto’s in één klap verdrievoudigen van 200 km naar 600 km. De voordelen zijn denk ik overduidelijk. Er is nog één probleem waar Wang en de zijnen mee worstelen: de capaciteit daalt in die 100 ontlaadcycli met 15%.  Ze hopen dit te verbeteren. De volgende stap is een werkend prototype van deze batterij te bouwen. Dit zou wel eens de doorbraak kunnen zijn waar we allemaal op hopen. Lukt dit Wang en zijn team, dan kunnen de oliesjeiks maar beter heel snel flink wat zonnepanelen in hun woestijn neerzetten, of een eerlijk vak leren. Dan is het namelijk definitief einde oefening voor olieslurpende auto’s.

Bronnen
Wang et al., Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur-Battery Cathode Material with High Capacity and Cycling Stability, arxiv.org (2011)
Sulphur Breakthrough Significantly Boosts Lithium Battery Capacity ,MIT Technology Review Arxiv Blog (2011)

De elektroden van de vloeibare batterij zijn fijnverdeeld in de vloeistof.

Vloeibare batterij stuwt elektrische auto voort

Je elektrische auto kan straks gewoon aan de pomp worden gevuld, net als een benzineauto. Niet met benzine, maar met Cambridge crude. Hebben we nu eindelijk de doorbraak die de elektrische auto mogelijk maakt?

Accu’s sloom en log

Dit goedje, door de uitvinders Cambridge Crude genaamd, is een vloeibare batterij.
Dit goedje, door de uitvinders Cambridge Crude genaamd, is een vloeibare batterij.

Elektrische auto’s werken met een accu. Ultracondensators kunnen in enkele seconden worden opgeladen en worden steeds beter en krachtiger. Helaas halen ultracondensators het qua opslagcapaciteit van energie nog niet bij accu’s, laat staan benzine. Het nadeel van accu’s is dat het opladen zo lang duurt. Een half uur of zelfs vele uren lang bezig zijn met laden, zal weinig forenzen aanspreken.

Onderzoekers van MIT hebben nu een oplossing gevonden. Hun nieuwe batterij, een zogeheten semi-solid flow cell, bestaat uit vaste deeltjes die als suspensie in een draagvloeistof zweven. Deze vloeistof wordt door het systeem gepompt. In dit ontwerp zijn de actieve onderdelen van de batterij – de positieve en negatieve elektroden – niet zoals in een gewone batterij, vastliggende platen. Ze bestaan uit deeltjes die in een vloeibare elektrolyt zweven. Deze verschillende suspensies worden door een systeem gepompt, gescheiden door een filter, zoals een dun poreus membraan.

De elektroden van de vloeibare batterij zijn fijnverdeeld in de vloeistof.
De elektroden van de vloeibare batterij zijn fijnverdeeld in de vloeistof.

Twee keer zoveel energie per kilo
Het onderzoek werd uitgevoerd door Mihai Duduta en Bryan Ho. Uniek aan dit nieuwe ontwerp is dat het de twee functies van de batterij: energie opslaan tot deze nodig is en de energie ontladen als deze gebruikt moet worden – in verschillende fysische structuren zijn ondergebracht. In een ‘gewone’ batterij nemen de elektroden beide functies tegelijkertijd over. Chiang, de begeleider van het onderzoek, zegt dat door deze twee functies te scheiden batterijen veel efficiënter kunnen worden[1]. Het nieuwe ontwerp belooft de afmetingen en kosten van een compleet batterijsysteem, inclusief  alle ondersteunende structuren en connectors terug te brengen tot ongeveer de helft van het huidige niveau. M.a.w. twee keer zoveel energie per kilogram. Deze verdubbeling van opslagcapaciteit op zich al kan elektrische voertuigen volledig laten concurreren met benzine- of dieselvoertuigen, aldus de onderzoekers. Als het bereik van een elektrisch voertuig zou worden verdubbeld en de kosten van de accu gehalveerd, dan zou dit elektrische voertuigen zonder subsidie in Nederland al haalbaar maken. De onderzoekers schatten dat 0,13-0,25 kWh per kilo denkbaar is [2].

 

Batterij tanken aan de pomp
Een ander voordeel is dat het systeem het mogelijk maakt, de batterij opnieuw op te laden door te tanken. De vloeibare slurry wordt er dan uitgepompt en vervangen door een verse, volledig opgeladen vervangingslading. Een andere oplossing (die ook bij andere types accu kan worden gebruikt) is de complete tank verwisselen. Als je de auto bekleedt met zonnepanelen, zou deze zelfs de tank weer opnieuw kunnen vullen.

Flow batteries bestaan al langer, maar hebben vloeibare media gebruikt met een zeer lage energiedichtheid. In een elektriciteitscentrale is dat niet zo erg – gewicht en volume is dan niet zo belangrijk. Het gaat dan eerder om de vraag, hoeveel energie per euro kan worden opgeslagen. In een elektrisch voertuig is gewichtsbesparing juist heel belangrijk.

Bronnen
1. New battery design could give electric vehicles a jolt, Physorg.com
2. Duduta, Ho et al., Semi-solid lithium rechargable flow battery,  Advanced Energy Materials (2010)

Een batterij met een pomp in plaats van groeiende en krimpende polen. In een flowreactor verandert niet de elektrode, maar de samenstelling van de elektrolyt.

Doorbraak flow batteries

Wind en zon leveren heel onregelmatig vermogen. Een ramp voor de netbeheerders, zij moeten de pieken en dalen opvangen. Tot nu. Een Amerikaanse startup zou wel eens de oplossing hebben kunnen ontwikkeld. Eindelijk een massale doorbraak van wind en zon?

Vermogenspieken nekken alternatieve energie
Windmolenparken zijn berucht door de vermogenspieken die ze opleveren. Als het hard waait, leveren windturbines extreem veel energie (deze energie neemt met de derde macht met de windsnelheid toe). Als het windstil is, is de energie nul. Zonne-energie is regelmatiger dan wind (ook bij een bewolkte dag leveren zonnepanelen nog de helft). Ook voor zonne-energie geldt dat de zon alleen overdag schijnt en er in de winter maar 10% zoveel zonneschijn is al in de zomer. In de praktijk moeten netstroombeheerders daarom gascentrales als backup gebruiken. Als er te weinig vermogen door de leidingen stroomt, kan de gascentrale snel inspringen. Het omgekeerde betekent helaas vaak dat windmolens afgekoppeld moeten worden. En dus dat er veel stroom verloren gaat.

Kortom: er moet een goedkope en effectieve manier komen om elektriciteit op te kunnen slaan. De bestaande alternatieven zijn duur en niet erg effectief. Het startende Californische bedrijfje Primus lijkt nu een goed en goedkoop alternatief te hebben ontwikkeld. Hierbij maken ze gebruik van een flow batterij.

Hoe werkt een flow battery?

Een batterij met een pomp in plaats van groeiende en krimpende polen. In een flowreactor verandert niet de elektrode, maar de samenstelling van de elektrolyt.
Een batterij met een pomp in plaats van groeiende en krimpende polen. In een flowreactor verandert niet de elektrode, maar de samenstelling van de elektrolyt.

Een normale batterij werkt met twee elektrodes (gewoonlijk bestaande uit verschillende metalen, bijvoorbeeld koper en zink) en een ionenrijke oplossing: de elektrolyt. Als de batterij energie levert, slaan (in dit voorbeeld) koperionen neer op de positieve elektrode en nemen elektronen op. Bij de negatieve elektrode gaat zink in oplossing en staat hiervoor zijn elektronen af. In de elektrolyt worden zo langzamerhand de koperionen vervangen door zinkionen. Als alle koperionen neergeslagen zijn, is de batterij leeg. Er ontstaat zo een elektrische stroom waar apparaten op werken.

Flow batteries (1) werken anders, namelijk met twee elektrolyten die gescheiden zijn door een doorlaatbaar membraan. Bij de zink-broom flow battery, bijvoorbeeld, wordt bij het opladen aan de  positieve pool broom afgezet en aan de negatieve pool tegelijkertijd zink. Aan de elektrodes worden deze stoffen niet opgeslagen, maar afgevoerd met de stroom. Dus aan de zink-kant veranderen zinkionen in vast zink (bekend van de dakgoot), aan de broomkant veranderen bromide-ionen in vloeibaar broom (een bruin, uiterst onaangenaam ruikend goedje). Daarom kan de capaciteit van de flow batterij ook enorm groot zijn.

Flow batteries zijn doorgaans enorme tanks van tien tot twintig meter groot. Tot nu toe zijn flow batteries nog niet erg populair, omdat ze vanwege hun enorme formaat op maat gebouwd moeten worden (dus erg duur zijn) en hun efficiëntie laag, rond de zestig tot vijfenzeventig procent.

Massa-productie van kleine cellen
Primus Power heeft nu een flow battery ontwikkeld die ongeveer zo groot is als een badkuip. Dit maakt de technologie ook voor toepassing op kleinere schaal interessant. Omdat deze mini flow batteries naar wens op elkaar gestapeld kunnen worden, is maatwerk niet meer nodig en kan de fabriek een automatische productielijn voor tienduizenden mini-flow batteries ontwikkelen. Bestuursvoorzitter Tom Stepien verwacht op deze manier de kosten te kunnen drukken tot vijfhonderd dollar per kilowattuur opslagcapaciteit. Dat is maar de helft van de kosten van een lithium-ionbatterij (2).  Primus werkt op dit moment ook aan een batterij die slechts voor honderd dollar per kilowattuur stroom kan opslaan. Wordt deze limiet bereikt, dan is het in ieder geval in Californië zelf zonder subsidie goedkoper om deze batterijen te plaatsen, dan om een nieuwe fossiele centrale neer te zetten om de pieken op te vangen. Het is dan echt einde oefening voor fossiel in zonnige en/of windrijke gebieden. En dat zijn er behoorlijk veel. Nederland, Spanje en Denemarken, bijvoorbeeld.

Bronnen
1. Flow Batteries: Elektropaedia
2. Startup Thinks It Can Make Flow Batteries Cheaper, MIT Technology Review

Licht opslaan in een batterij is theoretisch mogelijk. Als je spiegels maar goed genoeg zijn.

De lichtbatterij (1)

Zou het mogelijk zijn om energie op te slaan in eindeloos heen en weer kaatsend licht? In principe wel, als je spiegels maar goed genoeg zijn…

Batterijen hopeloos inefficiënt
De batterijen die we kennen hebben allen een belangrijk nadeel. De energiedichtheid is niet om over naar huis te schrijven. Eigenlijk is alleen antimaterie als energieopslagmiddel voldoende efficiënt. De totale massa van antimaterie kan (met een even grote hoeveelheid materie) volledig in de dubbele hoeveelheid energie omgezet worden. Dat betekent per gram antimaterie de hoeveelheid energie van de Hiroshima-bom. Hiermee vergeleken vallen de bestaande batterijen volkomen in het niet. In een (op dit moment in ontwikkeling zijnde) lithium-ion batterij van een kilo kan bijvoorbeeld maximaal twee kilowattuur worden opgeslagen (1). Dat is een lachertje vergeleken met de energie die vrijkomt als een kilogram massa geheel in energie wordt omgezet: 25 miljard kilowattuur. Het vervelende van antimaterie is dat het uiterst explosief spul en onhandelbaar spul is. Het moet worden opgesloten in een magnetisch veld. Ook heb je een zware versneller nodig om het te maken en zelfs dan met uiterst laag rendement. Niet erg praktisch dus.

Opslaan van licht
Een oplossing is om de energie als licht op te slaan. Fotonen zijn massaloze deeltjes die uit pure elektromagnetische energie bestaan. Als het mogelijk zou zijn om een kilogram-equivalent fotonen ergens op te slaan, zou je met die ene kilogram licht, heel Nederland bijna een half jaar van stroom kunnen voorzien. Kortom: een ideale batterij. Er zijn alleen een aantal lastige technische problemen.

Vacuüm en volmaakte spiegel nodig

Licht opslaan in een batterij is theoretisch mogelijk. Als je spiegels maar goed genoeg zijn.
Licht opslaan in een batterij is theoretisch mogelijk. Als je spiegels maar goed genoeg zijn.

Fotonen bewegen per definitie met de lichtsnelheid. Weliswaar kan je licht vertragen in een medium als glas, maar dan praat je niet meer over licht maar over fononen, trillingsquanta die langzamerhand geabsorbeerd worden. Zelfs in de allerbeste glasvezelkabel bedraagt het verlies bij de optimale golflengte 50% per duizend kilometer. Ook gaat een materiaal bij hoge energiedichtheden smelten. Conclusie: alleen totaal vacuüm komt dus in aanmerking.

Verder zal het licht opgesloten moeten worden in een beperkte ruimte. Dit kan bijvoorbeeld door middel van spiegels. In een reflecterende schoenendoos zal licht ongeveer een miljard keer per seconde weerkaatsen. De allerbeste spiegels, diëlektrische spiegels doe voor lasers worden gebruikt, absorberen ongeveer een honderdduizendste deel van het licht(2), dus na een duizendste seconde is al meer dan de helft van je licht weggelekt. Wil je het licht een dag opsluiten, dan moeten de spiegels een miljard maal beter worden.

Een andere oplossing is totale externe reflectie. Als licht onder een zeer vlakke hoek weerkaatst, reflecteert het vrijwel volmaakt. Dit effect merk je op een zonnige dag, waarbij zelfs de minieme reflectie van de hete luchtlaag boven de weg, al voldoende is om het spiegeleffect op te wekken. Daarvan kan je ook gebruik maken om licht eindeloos te laten weerkaatsen. Stel, je plaatst die diëlektrische spiegels in een ring en maakt ze extreem glad, dan kan je de reflectiviteit extreem veel opvoeren. Vermoedelijk wordt het dan haalbaar om licht er in op te sluiten.

Bronnen
1. Battery Booster, Chemical and Engineering News
2. Hecht, H. Optics, fourth edition, Pearson Education, ISBN 0-321-18878-0