dna

DNA blijkt in staat elektronen te sorteren.

‘DNA kan onderscheid maken tussen twee kwantumstaten’

DNA is in staat kwantumspin waar te nemen. Interessant voor knutselwerk op nanoniveau, maar de implicaties reiken nog veel verder. De processen in levende cellen blijken veel subtieler en fragieler dan tot nu toe werd vermoed…

Kwantumprocessen in biologische moleculen

Kwantumprocessen vinden over het algemeen plaats in extreem kleine systemen: atomen of erg kleine moleculen. Om ze te onderzoeken, moeten onderzoekers het materiaal gewoonlijk koelen tot temperaturen in de buurt van het absolute nulpunt. Zodra zo een systeem een bepaalde grootte of temperatuur overschrijdt, stort de kwantumgolffunctie ineen en gedraagt het systeem zich als een klassiek natuurkundig systeem (zoals in het dagelijk leven). Het is dus niet waarschijnlijk dat uitgerekend de zeer grote biologische moleculen die in levende wezens voorkomen, kwantumgedrag zouden vertonen en al helemaal niet bij kamertemperatuur. men zou verwachten dat een fragiele kwantumeigenschap als spin bij deze temperatuur en complexiteit zou worden vernietigd – en dus irrelevant zijn voor hun werking, aldus onderzoeker Naaman.

DNA blijkt in staat elektronen te sorteren.
DNA blijkt in staat elektronen te sorteren.


DNA-kurkentrekker filtert elektronen op spin

Biologische moleculen hebben echter nog een eigenschap: chiraliteit. Ze kunnen linksom of rechtsom gedraaid zijn. Wellicht herinner je je uit de scheikundeles een proefje waarbij de effecten van linksdraaiende en rechtsdraaiende moleculen  op gepolariseerd licht worden vastgesteld. Deze eigenschap blijkt nu niet alleen licht, maar ook elektronen te beïnvloeden, ontdekte Naaman. DNA, dat de vorm heeft van een wenteltrap of dubbele spiraal, is zelfs dubbel chiraal: zowel elke ketting nucleïnezuren als de spiraal als geheel vertonen chiraliteit. Al langer was bekend dat chirale moleculen verschillend reageren op linkstollende of rechtstollende elektronen (spin up of spin down). Gezien de chirale eigenschappen van DNA werd hetzelfde effect in DNA verwacht.

DNA als spindetector
Het onderzoeksteam uit Israël, Duitsland en de VS waar Naaman deel van uitmaakt, nam de proef op de som. Hiertoe brachten ze een enkel laagje DNA m.b.v. een zelfassemblageproces aan op een goudlaagje. Het team ontdekte dat DNA inderdaad opmerkelijk effectief is in het filteren van elektronen met een bepaalde spin. Hoe langer de DNA-helix, hoe effectiever. Een enkele streng DNA of beschadigd DNA vertoonde deze opmerkelijke eigenschap niet. Dit betekent dat het de spiraalstructuur van DNA is die de filtereigenschap veroorzaakt.  DNA is volgens Naaman in feite een uitstekende “spin filter” en de ontdekkingen van het team kunnen zowel betekenis hebben voor biomedisch onderzoek en spintronica. Als bijvoorbeeld blijkt dat DNA alleen wordt beschadigd als de spin van elektronen in een bepaalde richting wijst, kan de experimentele omgeving zo worden veranderd dat dit wordt vermeden. Ook kan DNA -of vergelijkbare chirale moleculen – een centraal onderdeel gaan vormen van spintronica, een zeer energiezuinig alternatief voor elektronica dat echter nog in de kinderschoenen staat.

Bronnen
1. B. Gohler, V. Hamelbeck, T. Z. Markus, M. Kettner, G. F. Hanne, Z. Vager, R. Naaman, H. Zacharias. Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA. Science, 2011; 331 (6019): 894
2. DNA Can Discern Between Two Quantum States, Research Shows, Science Daily
3. Spinning Off DNA, Weizmann Institute, Israel

DNA-computers zijn zeer klein en zuinig. Ze beloven denkende medicijnen mogelijk te maken en nog veel meer...

DNA-computer: supercomputers en denkende medicijnen

Een DNA-computer verslaat alle bestaande computers met stukken wat betreft rekensnelheid en geheugencapaciteit. Komen er zelfdenkende medicijnen? Zal DNA de opvolger betekenen van onze bestaande computers? De mogelijkheden zijn enorm, maar er zijn nog de nodige technische uitdagingen.

Einde van de Wet van Moore

Tot op heden is de rekencapaciteit van computers elke twee jaar verdubbeld. Moore’s Law, zoals deze self-fulfilling prophecy heet, blijkt al veertig jaar lang een ijzeren wet. Een verbazingwekkende prestatie. Vooral als je bedenkt wat de vooruitgang is geweest in andere technische en wetenschappelijke takken van sport. Als je de lijn doortrekt zullen transistors rond 2020 de grootte hebben van moleculen. Dit kan – er zijn moleculen die in theorie als zodanig gebruikt kunnen worden – maar hierna is de theoretische limiet wel bereikt (tenzij je op de een of andere manier met subatomaire deeltjes, ruimtetijd zelf of foton-foton interacties kan rekenen). Het is dus duidelijk dat de huidige computerarchitectuur, met een werkgeheugen en een processor, over tien jaar tegen fundamentele problemen aanloopt.

De DNA-computer is zeer klein en zuinig. DNA-computers beloven denkende medicijnen mogelijk te maken en nog veel meer...
De DNA-computer is zeer klein en zuinig. Ze beloven denkende medicijnen mogelijk te maken en nog veel meer… Bron: Pixabay/TheDigitalArtist

Voordelen van een DNA-computer

DNA bestaat uit een extreem lange ketting van vier bouwstenen: de nucleotiden adenine, guanine, cytosine en thymine. Deze komen steeds in vaste paren (adenine + thymine of cytosine + guanine) gecombineerd voor. Per basenpaar zijn er hiermee vier mogelijkheden: een keuze tussen twee basenparen en per basenpaar, de onderlinge positie): twee bits dus. De hoeveelheid informatie in het menselijk DNA is enorm: drie miljard basenparen, 0,75 gigabyte, de inhoud van een volle cd-rom. Per cel en daar zijn er in het menselijk lichaam rond de vijftig tot honderd biljoen van.

Een tweede aantrekkelijke eigenschap van DNA is dat het tegelijkertijd ook een processor is. In plaats van één processor werken er ontelbare miljarden processoren tegelijkertijd. Kopiëren gaat vrij eenvoudig.De ketting wordt uit elkaar geritst. Vervolgens hechten de  ontbrekende nucleotiden zich op de openvallende plaatsen. En automatisch wordt één DNA-keten, er twee. Ook kan DNA snel combineren met een ontbrekende nucleotide. De rekensnelheid van een DNA-computer is dan ook enorm en groter dan die van alle pc’s ter wereld bij elkaar.

Dat bij een extreem laag energieverbruik. Een DNA molecuul heeft alleen de brandstof ATP nodig om twee DNA-kettingen uiteen te rukken. Samenvoegen en hydrolysering gaat automatisch, omdat deze toestanden energetisch gunstiger zijn. Het resultaat is dat een DNA-computer een miljoen maal zo zuinig is als een pc.

DNA-computer temmen

DNA kan slechts enkele gespecialiseerde berekeningen uitvoeren. Niet alle. Naast kopiëren en plakken kan DNA fouten corrigeren. Zo is Leonard Adleman er in geslaagd een kleine versie van het beruchte handelsreizigerprobleem (de kortste route om meerdere steden aan te doen) op te lossen(1). De techniek komt er op neer dat voor elke mogelijke route een DNA-molecuul wordt gecreëerd dat vervolgens wordt uitgetest. Maar dan wel ontelbare malen tegelijk. Waarschijnlijk ontdekken we in de toekomst meer mogelijkheden.

Denkende medicijnen

Onderzoekers als Ehud Shapiro zijn nu bezig het aantal mogelijkheden van de techniek uit te breiden (2). Zo slaagde Shapiro er in om een DNA-computer vrij gecompliceerde logische puzzels op te laten lossen. Ook hier geldt dat met de voorbereidingstijd meegerekend, een normale computer dit veel sneller kan. Maar deze techniek kent direct al een nuttige toepassing. Stel dat door een bepaald type kankergezwel het gehalte in het bloed van stoffen 1, 2 en 3 stijgt. De DNA-computer zal dan een medicijn kunnen loslaten als (en alleen als) deze drie stoffen tegelijkertijd voorkomen. (3) Je kan op die manier ‘denkende’ medicijnen samenstellen. Die alleen op een bepaalde plaats, waar de concentratie kankerstoffen hoog is, of bij een bepaald ziektebeeld hun (doorgaans giftige) werkzame stof afgeven.

Bronnen
1. DNA Computing: a primer (Ars technica)
2. E. Shapiro et al., Molecular implementation of simple logic programs, Nature Nanotechnology
3. E. Shapiro et al., Bringing DNA Computers to Life, Scientific American

Bacterie-internet. Er is niets nieuws onder de zon...

‘Bacteriën gebruiken draadloze radio’

Nobelprijswinnaar geneeskunde Luc Montagnier beweert dat bacteriën onderling communiceren met radiogolven. Tot voor kort werd dit categorisch uitgesloten: immers bacteriën zijn veel te klein om radiogolven te kunnen opvangen. Onderzoekers komen nu echter met een mechanisme dat zou kunnen werken: DNA-lussen die werken als moleculaire radiozenders.

Op het eerste gezicht lijkt het idee krankzinnig. Om radiogolven op te wekken heb je een elektrische geleider of sterk wisselend elektromagnetisch veld nodig. In de natuur zijn radiobronnen dingen als bliksemschichten, sterke magnetische velden zoals rond Jupiter of pulsars. Allan Widom en zijn collega’s van de Northeastern University in Boston en twee Indiase onderzoekers  hebben nu echter een manier uitgedokterd hoe bacteriën toch in staat zouden kunnen zijn radiogolven uit te wisselen, al blijft het echte grenswetenschap.

Bacteriën bevatten ronde lussen DNA: plasmiden. Zouden dit niet alleen genen, maar ook radio-ontvangers zijn?
Bacteriën bevatten ronde lussen DNA: plasmiden. Zouden dit niet alleen genen, maar ook radio-ontvangers zijn?

DNA als radioantenne
Hun verklaring: DNA-lussen. Veel DNA in bacteriën komt voor in de vorm van plasmiden of andere lussen. Ze hebben het gedrag van vrije elektronen die zich rond een dergelijke DNA-ring bewegen, gemodelleerd. De elektronen zitten dan opgesloten in die ring. Kwantummechanisch gezien krijgen ze dan bepaalde energieniveaus, vergelijkbaar met wat in normale atomen gebeurt. Hoe groter het gebied waarin de elektronen vrij kunnen bewegen, hoe kleiner de verschillen tussen de energieniveaus. Radiostraling bestaat uit fotonen met elk heel weinig energie, in de buurt van de energieniveaus in deze DNA-ringen.

‘Bacterie zendt radiostraling uit’
Widom en zijn collega’s berekenden dat de overgangsfrequenties tussen deze energieniveaus overeen komen met radiogolven tussen de 0,5, 1 en 1,5 kilohertz (tussen de 500 en 1500 trillingen per seconde: langgolvige radiostraling). Precies de radiostraling die Luc Montagnier in 2009 waargenomen heeft in E. Coli-bacteriën. Montagnier als persoon en zijn onderzoek zijn uiterst controversieel in biologische kringen. Eén geliefd argument van zijn collega’s om hem onderuit te halen, de afwezigheid van radiogolf-gevoelige structuren in bacteriën, blijkt met deze berekening echter verdwenen te zijn.

Bacterie-internet. Er is niets nieuws onder de zon...
Bacterie-internet. Er is niets nieuws onder de zon...

Bekend (en ook algemeen aanvaard in de biologische gemeenschap) is al wel dat bacteriën onderling communiceren met een soort stroomdraden op nanoschaal. Hiermee kunnen ze onderling elektrische energie uitwisselen (een bacterie in een elektronrijke omgeving kan deze naar een collega in een elektronarme omgeving sturen, wat beide veel energie oplevert) en ook signalen doorgeven. Een uiterst controversiële gedachte: zouden deze nanodraden ook als radiotransceivers werken?

Dit onderzoek uiterst controversieel noemen, is een enorm understatement. Wel is het welbekend dat bacteriën en andere celtypes elektromagnetische golven op hogere frequenties (o.a. licht) gebruiken om energie te verzenden en op te slaan. Als ook cellen radiogolven kunnen opwekken, is er geen reden waarom ze niet in staat zouden zijn gebruik te maken van deze golven. Want zeg nu zelf: radiogolven zijn uiterst handig. Zouden bacteriën ons ook op dit terrein voor zijn?

Al eerder veronderstelden we op Visionair dat misschien fagen, bacterievirussen, gebruik maken van radiogolven om boodschappen te ontvangen. Misschien zenden de DNA-ringen van actieve collega-bacteriën een signaal uit, waardoor de faag wordt ‘getriggerd’ als een nano-tijdbom om de gastheer-bacterie op te blazen, zodat hij een maximale kans heeft andere bacteriën te besmetten.

Bronnen
MIT Technology Review ArXiv Blog
Arxiv

Vind je je aquarium veel te saai? Hack dan je eigen vis.

Bio-hackers: aan DNA knutselen in je garagebox

Na open-source tekst, muziek en software komt er nu ook open-source DNA. De biohackers beweging wil genetische manipulatie ook voor het grote publiek bereikbaar maken. Eindelijk gratis medicijnen?

Bits, bytes en DNA als digitale informatie
Sinds Watson en Crick in 1953 de genetische code ontdekten, weten we dat bits en bytes niet alleen in computers voorkomen, maar dat ook ons DNA veel weg heeft van een digitale code. Waar een computer alleen nullen en enen onthoudt, werkt ons DNA met vier chemische ‘letters’ , de basen adenine, guanine, cytosine en thymine, waarbij een adenine-molecuul altijd tegenover guanine zit en cytosine tegenover thymine. Deze letters worden vertaald in RNA, dat vervolgens door een ribosoom, een eiwitfabriekje, met drie ‘letters’ tegelijk wordt afgelezen en vertaald in een keten van aminozuren: het eiwit.

Alle eigenschappen van eiwitten worden bepaald door de aminozuurvolgorde, hoewel eiwitten zich op een zeer ingewikkelde en nauwelijks te voorspellen manier vouwen en vaak ook niet-eiwitgroepen, denk aan metaalionen, vitaminen of suikers, aan het eiwit worden gehecht. Kortom: DNA bevat een compleet programma, een bouwdruk van alle eiwitten in ons lichaam.

Knutselen met DNA op je computer
Het is dus in principe mogelijk DNA-informatie op je computer te bewerken, te knippen en te plakken. Stel, je wilt van een bepaalde tulp de kleur veranderen door een bepaald pigment toe te voegen. Je weet dat dat pigment wordt geproduceerd door een purperslak. Dan vervang je op je computer de DNA-code van een bestaand pigment door het enzym van de purperslak, stuurt de gewijzigde DNA-code naar een DNA-assembler  en ziedaar, je nieuwe paarse tulp. Voor organismen met chromosomen (zoals planten, dieren en mensen) zitten hier nog de nodige haken en ogen aan (hoewel het technisch wel mogelijk is en ook geregeld gedaan wordt), maar voor bacteriën is dit routinewerk. Bacteriën werken namelijk met plasmiden, losse DNA-ringen die vrij makkelijk uitgewisseld kunnen worden (en dus ook aan een bacterie toegevoegd kunnen worden). Als je je gewijzigde DNA-code naar een gespecialiseerd bedrijf opstuurt, sturen zij de bacterie terug waar je je DNA in hebt laten bouwen.

Je zou dus bij wijze van spreken het complete menselijke genoom (alle DNA) op een harde schijf of CD-ROM (of een sleutelhanger met een USB stick) kunnen zetten. Ons complete genoom bevat rond de 3 miljard baseparen.

Vind je je aquarium veel te saai? Hack dan je eigen vis.
Vind je je aquarium veel te saai? Hack dan je eigen vis.

De biopunkbeweging
Biohackers geloven dat wetenschap gedemocratiseerd moet worden en niet alleen plaats moet vinden in dure laboratoria van de overheid of grote corporaties. In de negentiende eeuw was wetenschap het domein van amateuronderzoekers die in hun vrije tijd in een achterkamertje baanbrekend natuurkundig, biologisch of astronomisch onderzoek deden. Nu zijn citizen scientists de uitzondering. Er moet een nieuwe impuls komen voor amateurwetenschappers. We zijn te bang geworden voor biotechnologisch onderzoek. Aldus Meredith Pattersons Biopunk Manifesto(1), dat duidelijk is gekant tegen het huidige restrictieve beleid wat betreft biotechnologie en het voorzorgsprincipe dat daar achter schuilgaat.

Hack een konijn of vlinder
Kunstenaars hebben al geëxperimenteerd met de mogelijkheden. Uiteraard kan je op deze manier ook je eigen enzymen produceren. Menselijk insuline, bijvoorbeeld. Op dit moment verdienen farmaceutische bedrijven honderden miljarden aan het produceren en verkopen van allerlei biotech-medicijnen. Voor arme zieken worden medische behandelingen zo onbetaalbaar, zeker in landen zonder ziekenfonds zoals de Verenigde Staten.  Het goede nieuws: al voor enkele honderden euro zijn de benodigdheden voor een genlab te koop. Dus heb je de nodige biologische en biochemische achtergrondkennis en weet je hoe je met de apparatuur overweg moet, dan kan je in principe in je schuurtje een medicijn tegen kanker ontwikkelen.Voor de absolute beginners is er de Genomikon edu-kit voor synthetische biologie. Heb je het métier eenmaal in de vingers, dan begint het echte werk.

Open-source geneesmiddel
Onderzoek naar geneesmiddelen is nu alleen haalbaar voor bedrijven met heel diepe zakken. En zoals bekend, zijn de belangen van grote bedrijven doorgaans anders dan die van patiënten. De biohackersbeweging , onder andere de mensen van DIYBio, wil daarom medicijnontwikkeling naar de massa brengen. Stel, jij of iemand anders lijdt aan een zeer nare erfelijke ziekte  als taaislijmziekte of de ziekte van Huntingdon. Vooral bij zeldzame erfelijke aandoeningen was je dan tot nu toe overgeleverd aan de doorgaans uiterst beperkte genade van medicijnfabrikanten. Voor de zogenaamde “orphan” aandoeningen zijn er te weinig patiënten om productie en onderzoek van het medicijn interessant te maken. Biohackers kunnen hier instappen en open-source medicijnen ontwikkelen.
Sommige radicale biohackers willen zelfs virussen ontwikkelen om erfelijke ziektes mee te genezen. Hiermee zou heel veel menselijk lijden worden voorkomen. Wel moet voorkomen worden dat er bepaalde zieke geesten deze techniek misbruiken omdat ze bijvoorbeeld vinden dat de aarde veel beter zonder mensen kan.

Je eigen forensisch DNA-lab
Sinds de ontwikkeling van PCR, polymerase chain reaction, kan ook een minuscule hoeveelheid DNA met weinig moeite verveelvoudigd worden. Een uitkomst bij forensisch onderzoek. Tot voor kort waren PCR-apparaten erg duur omdat er nog patent op rustte, maar de groep OpenPCR (2)  heeft nu een open-source PCR apparaat ontwikkeld.  Voor rond de duizend dollar (750 euro) heb je je eigen forensisch lab in je garage.

Bronnen
1. Biopunk manifesto
2. OpenPCR.org
3. MIT Technology Review