neutronenster

Artist impression van een neutronenster up close.

Video: aarde vernietigd door neutronenster

Een neutronenster is een extreem dichte bol neutronenvloeistof van ongeveer vijftien kilometer doorsnede met hierin de massa van een complete ster, typisch rond anderhalve tot iets meer dan drie zonsmassa. De gevolgen als een dergelijke compacte ster op de aade afkomt laten zich raden. De aarde wordt compleet kapotgetrokken door de verpletterende zwaartekracht. Bekijk hier de spectaculaire animatie, afkomstig uit een NGC docu.

Ter geruststelling: neutronensterren in de buurt zouden we reeds lang geleden al op hebben gemerkt vanwege hun enorm sterke zwaartekrachtseffecten. De dichtsbijzijnde neutronenster, PSR J0108-1431, bevindt zich op 770 lichtjaren afstand.

Artist impression van een neutronenster up close.
Artist impression van een neutronenster up close.
De accretieschijf rond de pulsar in de Krabnevel is duidelijk te zien.

‘Pulsar is gigantische permanente magneet’

Verschillende onopgeloste problemen worden in één klap opgelost door aan te nemen dat pulsars, ingestorte sterren met een extreem sterk magneetveld, nog meer bizar zijn dan we tot nu toe dachten.

Kubieke meter magneetveld bevat meer energie dan de mensheid ooit heeft geproduceerd
Pulsars zijn ronddraaiende neutronensterren – de resten van zware ‘uitgebrande’ sterren die voornamelijk uit dicht opeengepakte neutronen staan. In een bol van twintig tot dertig kilometer diameter bevindt zich meerdere malen de complete massa van een ster als de zon. We kunnen pulsars waarnemen door hun extreem snelle draaiing en zeer sterke magnetische velden. Per kubieke meter bevat dit magneetveld meer energie dan de mensheid in zijn hele geschiedenis heeft opgewekt. Dit magneetveld heeft een andere richting dan de draairichting van de ster, waardoor voortdurend een bundel radio- of röntgenstraling afkomstig van een van de magnetische polen, over de aarde zwiept. Althans: bij de pulsars die we waar kunnen nemen.

De accretieschijf rond de pulsar in de Krabnevel is duidelijk te zien.
De accretieschijf rond de pulsar in de Krabnevel is duidelijk te zien.

Bestaande theorieën verklaren niet waarom neutronenster zo een sterk magnetisch veld heeft
Wat uiteraard de vraag openlaat: waar komt dat extreem sterke magneetveld van een biljoen tesla vandaan? Om een indruk te geven: dat is vele miljarden maal zo sterk als zelfs het allersterkste magneetveld ooit door de mens opgewekt. Tot nu toe werd gedacht dat het werd opgewekt door stromende geladen deeltjes als gevolg van de extreem snelle rotatie van de pulsar. Deze geladen deeltjes moeten zich gedragen als een supervloeistof en dus zonder weerstand stromen. Er is alleen een probleem met deze theorie: uiteindelijk gaat een dergelijke stroom zich gelijkrichten met de rotatie. De magnetische polen vallen dan samen met de echte polen en dan blijft de zwiepende bundel voor altijd stilstaan. Zoals we weten is dat onzin. Ook zijn supergeleidende stromen zeer onstabiel terwijl pulsars juist extreem nauwkeurig zijn. Een andere theorie is dat het magnetische veld van de ster wordt geconcentreerd in de zeer kleine neutronenster. Ook dit wekt problemen op: de sterkste pulsars hebben een veld van een biljoen tesla, veel meer dan dit proces kan verklaren. Ook verdwijnt het grootste deel van het magnetische veld met de enorme sterontploffing die de pulsar vormt.

Permanente neutromagneten
Twee Zweedse fysici, Johan Hansson en Anna Ponga van de technische universiteit van LuleÃ¥, hebben een slimme uitweg uit dit heikele probleem gevonden. Magneetvelden worden gevormd door stromende elektrische ladingen, maar ook door natuurlijke magneetjes, zoals ijzeratomen in een staafmagneet, op één lijn te krijgen.  Dit is volgens het tweetal precies wat er in neutronensterren gebeurt. Als een neutronenster zich vormt, worden neutronen – elk een minuscuul magneetje – gelijkgericht omdat dat de toestand van minste energie is. Als de neutronen eenmaal een bepaalde configuratie hebben gekregen, blijft het magnetische veld ook in stand. Elke afwijking betekent energieverlies. Dit maakt neutronensterren gigantische permanente magneten: neutromagneten.

Neutromagneet versterkt zichzelf
Een neutromagneet is erg stabiel, net als een ferromagneet (vrijwel alle permanente magneten die we kennen). Het veld zal zich richten naar het oorspronkelijke, veel zwakkere, magnetische veld van de ster. Dit veld wordt hierdoor extreem versterkt, ongeveer zoals ijzer in een spoel het opgewekte magneetveld enorm versterkt. Heel interessant is dat dit niet in dezelfde richting hoeft als de draaias. In grote lijnen hebben neutronensterren een vergelijkbare massa – ze vormen een vrij nauwe overgang tussen witte-dwergsterren en zwarte gaten. Om die reden konden Hansson and Ponga berekenen wat de maximum veldsterkte is van de velden die ze kunnen genereren. Deze maximumsterkte blijkt rond de biljoen tesla te liggen, precies de al genoemde maximale waargenomen sterkte. Dit lost verschillende van de openstaande puzzels in neutronensterfysica in één klap op.

De theorie is ook eenvoudig uit te testen, wat het een goede, bona fide wetenschappelijke theorie maakt. Volgens de theorie kunnen neutronensterren geen magnetisch veld hebben dat sterker is dan 1012 tesla. Vinden astronomen een sterker magneetveld, dan is hiermee de theorie onmiddellijk verworpen.

Gooit Pauliverbod roet in het eten?
De theorie is niet onomstreden. Zo is het de vraag of het Pauliverbod, een kwantummechanische regel die het verbiedt dat twee fermionen (deeltjes met een oneven spin, zoals onder meer elektronen, protonen en neutronen) zich in dezelfde faseruimte met dezelfde eigenschappen bevinden, dit niet verbiedt. Immers: twee neutronen die precies dezelfde richting op staan, zijn volledig identiek. Hansson en Ponga wijzen echter op laboratoriumexperimenten die een aanwijzing lijken te geven dat kernspins zich in dezelfde richting kunnen richten. Ze denken dat dicht opeengepakte neutronen wel eens andere kwantumgetallen zouden kunnen hebben dan materie zoals wij die kennen. Ze noemen een isotopische tripletstaat als voorbeeld van een kwantumconfiguratie die gelijkrichting wel toestaat. Meer in het algemeen: neutronensterren vormen volgens hen een extreme staat van de materie die we niet in het lab na kunnen bootsen en die heel goed onbekende eigenschappen kan vertonen. Het zou niet de eerste keer zijn dat de natuur ons voor verrassingen stelt.

Verandert de snelle rotatie de kwantumeigenschappen van deeltjes?
Dan is er wellicht nog een mogelijkheid, niet in het artikel genoemd. Er is door astronomen eerder vastgesteld dat er onder een bepaalde rotatiesnelheid (de langzaamste pulsar roteert elke 8,6 seconden) geen pulsars meer voorkomen. Klaarblijkelijk schakelt het stilvallen van de rotatie pulsars uit. Logisch, zegt de bestaande theorie, immers deze rotatie wekt net als bij de aarde het magnetische veld op dus als deze verdwijnt, verdwijnt ook het veld. De nieuwe theorie verklaart dit verschijnsel niet. Maar zou het niet zo kunnen zijn dan de hoge rotatiesnelheid extra vrijheidsgraden aan de neutronen geeft (of bosonische, magnetische quasideeltjes in de supervloeistof vormt) die, als de pulsar stilvalt, wegvallen en zo het Pauliverbod in werking doen treden? En daarmee het magneetveld uitschakelen?

Kortom: een controversiële theorie van beide fysici, maar zeer elegant. Waard om verder onderzoek naar te doen.

Bron:
Hansson en Ponga, Pulsars: Cosmic Permanent ‘Neutromagnets’?, ArXiv (2011)

Heeft een latere supernova de aarde gebombardeerd met radioactieve metalen?

De aardse korst is erg rijk aan radioactieve metalen als uranium. Vreemd, want die zijn heel zwaar en zouden dus al lang naar beneden hebben moeten zakken. Waar komen deze metalen vandaan?

Dankzij een asteroïdenbombardement is de aardkorst erg rijk aan metalen als goud en uranium. Maar waar komt die merkwaardig hoge radioactiviteit vandaan?
Dankzij een asteroïdenbombardement is de aardkorst erg rijk aan metalen als goud en uranium. Maar waar komt die merkwaardig hoge radioactiviteit vandaan?

Alle metaal in de kern van de aarde
Bij de vorming van zwaardere hemellichamen vindt een proces plaats waarbij de zwaardere delen naar de kern zakken, terwijl de lichtere delen naar boven komen drijven. Om die reden zit vrijwel alle metaal van de aarde in de nikkel-ijzer kern. Dit inclusief zwaardere metalen, die graag een legering met ijzer vormen, zoals goud. Zou al dit edelmetaal aan de oppervlakte liggen, dan was de aarde overdekt met een vier meter dikke laag goud, zilver, iridium, osmium en platina. Hoe de kern is samengesteld weten we uit fragmenten van ijzermeteorieten, de overblijfselen van de kern van een planetesimaal die miljarden jaren geleden uiteen is gespat. Deze bestaan bijna helemaal uit massief metaal: een legering van ijzer met vijf procent nikkel en een procent kobalt.

We zeiden het al eerder: metaalasteroïden zijn tot honderden kilometers grote brokken vrijwel puur metaal. De grootste metaalasteroïde, 16 Psyche, is met met dan 200 km doorsnede groot genoeg om de aardse metaalhonger voor een miljoen jaar te stillen. Wel is de planeet dan uiteraard overdekt met een dikke laag roest, dus recycling is beslist een slimmer idee.

Wolfraam wijst op inslag metaalrijke asteroïde
In september 2011 is onderzoek gedaan aan Groenlandse rotsen van 3,8 miljard jaar oud. De aarde zelf was bij het ontstaan van deze rots minder dan een miljard jaar oud. Twee wolfraam-isotopen komen hierin in een iets andere verhouding voor dan in jongere rotsen, denk aan rotsen van drie miljard jaar of jonger.  Klaarblijkelijk is er iets gebeurd in de tussentijd. Astronomen denken dat dat ‘iets’ het “late heavy bombardment” is geweest, waar vermoedelijk de inslag van een metaalasteroïde onderdeel van uitmaakte. Deze heeft de aardkorst voorzien van een zeer hoge concentratie zware metalen.

Waarom is de aardkorst zo radioactief?
We weten uit metingen aan neutrino’s, dat de aardkorst, om precies te zijn: de continentale aardkorst, de grootste bron is van het type neutrino’s dat vrijkomt bij radioactief verval. Met andere woorden: in de aardkorst zitten twee ordes van grootte (rond de honderd maal) hogere concentratie zware radioactieve metalen zoals uranium, dan in welk ander deel van de aarde ook, inclusief de kern die vrijwel geen radioactief materiaal bevat [2].

Interessant is uiteraard de vraag waarom deze meteorietfragmenten veel radioactiever waren dan de metalen die de kern van de aarde hebben gevormd. Radioactiviteit, het is bekend, neemt af met de tijd. Klaarblijkelijk is het metaal in de aarde dus eerder gevormd dan de meteorietfragmenten die op de aarde zijn neergeregend. Er zijn dus, zou je kunnen concluderen, twee verschillende bronnen van zware metalen in het zonnestelsel. De eerste bron is de oudere explosie, misschien wel daterend van vele miljarden jaren voor het ontstaan van het zonnestelsel, die de nevel schiep waaruit het zonnestelsel is ontstaan.

De tweede bron is dan van recentere datum en produceerde veel radioactief materiaal. Dit moet volgens recente inzichten om botsende neutronensterren zijn gegaan[3]. Misschien is de schokgolf hiervan de trigger geweest waarom de protosolaire nevel is gaan samentrekken. Inderdaad wijzen waarnemingen aan andere nevels er op dat botsende gaswolken voor een kritische verdichting kunnen zorgen. Misschien dat brokstukken materiaal afkomstig uit de tweede, recentere bron de leverancier zijn geweest van deze radioactieve fragmenten en het Late Heavy Bombardment in het algemeen in gang heeft gezet. Nu vermoedelijk bekend is waar zware elementen vandaan komen, is dat niet al te moeilijk om vast te stellen. We hoeven alleen de verhoudingen van bepaalde radioactieve isotopen te meten om de ouderdom van hun bron vast te stellen, bijvoorbeeld door de stokoude Groenlandse rots te vergelijken met jonge rots. De grootst denkbare whodunnit: welke gebeurtenis heeft het ontstaan van het zonnestelsel op zijn geweten?

Bronnen
1. Matthias Willbold, Tim Elliott en Stephen Moorbath, The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment, Nature, 2011
2. Stephen T. Dye en Eugene H. Guillian, Estimating terrestrial uranium and thorium by antineutrino flux measurements, PNAS.org (2007)
3. Stephane Goriely et al., r-process Nucleosynthesis in Dynamically Ejected Matter of Neutron Star Mergers, Astrophysical Journal (2011), zie ook Physorg