zonnestelsel

Het kan nog erger. De Orionraket gebruikt atoombommen als aandrijving.

Kernraket legt zonnestelsel open

NASA en Roscosmos, de Russische ruimtevaartorganisatie, zijn besprekingen begonnen om gezamenlijk een atoomraket te ontwikkelen. Een raket op atoomenergie hoeft veel minder raketbrandstof mee te nemen dan een chemische raket, het huidige type. Kunnen we nu eindelijk naar Mars?

Raketten anno nu zijn chemische bommen
Stel je voor, je zit op honderd ton springstof. Er hoeft maar een klein scheurtje in de romp voor te komen en het loopt akelig af. Via een heel strak gecontroleerd brandschema ontploft de brandstof. Halverwege de raket stoppen zit er niet in, de rakettrap blijft doorbranden tot hij helemaal leeg is. Niet erg aantrekkelijk? Toch is dit de realiteit in de ruimtevaart. Astronaut is dan ook verreweg het gevaarlijkste beroep, wellicht na cocaïnehandelaar. Ongeveer drie procent van de astronauten overleeft het niet.

De reden is dat er voor de lancering van bijvoorbeeld een satelliet of ruimtesonde enorm veel energie nodig is. De ontsnappingssnelheid van de aarde is 11,2 kilometer per seconde. Dat betekent dat er per kilo ruimtesonde ongeveer 62,7 megajoule, dat is de energie in anderhalve liter benzine of 17,4 kilowattuur, energie nodig is. Een raket verbruikt veel meer omdat de brandstof voor de extra voortstuwing ook nog meegesleept moet worden. Zo kon de Saturnus V raket waarmee de Apollo-missies uit werden gevoerd, maar 1,5% nuttige lading meenemen naar de maan. Voor Mars worden de getallen nog afgrijselijker, al zijn moderne raketten iets verbeterd.

Raketten reizen door de absolute leegte van de ruimte en kunnen zich niet zoals een schip, auto of vliegtuig ergens tegen afzetten om vooruit te komen. De enige oplossing is: zich tegen de eigen stuwbrandstof afzetten. Raketten doen dit door die brandstof heel snel uit te stoten. In de praktijk heeft een raketontbranding daarom veel weg van een gecontroleerde explosie. De gasstroom ontsnapt zeer snel uit de raket, waardoor de raket ‘omhoog’ geduwd wordt.  Zelfs als je in een raket zou beschikken over oneindig veel energie, heb je dus nog massa nodig om je tegen te kunnen afzetten.

De atoomraket: veel meer lading en minder brandstof

Het kan nog erger. De Orionraket gebruikt atoombommen als aandrijving.
Het kan nog erger. De Orionraket gebruikt atoombommen als aandrijving.

Er bestaan weliswaar enkele vernuftige ontwerpen voor ruimtevaartuigen zonder stuwmassa, denk aan zonnezeilen, elektromagnetische zeilen en ontwerpen die zich afzetten tegen het magnetisch veld van de aarde, maar deze zijn alleen nuttig voor kleine ruimtevaartuigen of diep in de ruimte, buiten de greep van de aarde. Een kernraket kan veel hogere uitstroomsnelheden van reactiemassa bereiken, waardoor de raket veel sneller vooruitkomt (en er minder kilo’s reactiemassa meegesleept hoeven te worden). Nadelen van atoomraketten zijn er ook: als een kernreactor hoog in de atmosfeer ontploft, kan dit veel radioactieve fall-out opleveren. De reden dat bijvoorbeeld NASA huiverig is kernraketten in te voeren.

De Russen durven het nu toch aan. Directeur Anatoly Permirov van Roskosmos heeft een internationaal project voorgesteld om een atoomraket te ontwikkelen. Naast Rusland en de VS beschikken ook China, Frankrijk, Duitsland en Japan over de benodigde kennis en zouden dus logische partners zijn. De bouw zou om en nabij de zeshonderd miljoen dollar (plm. 450 miljoen euro) kosten. Dit bedrag is naar ruimtevaartmaatstaven laag (zelfs een Space Shuttle lancering kost al $450 miljoen) en zou Rusland met gemak zelf op kunnen hoesten, maar er zijn enkele internationale verdragen die de inzet van kernreacties in de ruimte verbieden. Om een ruimteschip aan te drijven is een kernreactor van megawatts nodig. Internationale samenwerking voorkomt problemen. 15 april 2011 vindt een gesprek tussen NASA en Roskosmos plaats. Als beide partijen er uitkomen, zou het ontwerp in 2012 gereed zijn. Het grootste deel van de investering zou komen van het Russische kernenergiebedrijf Rosatom. De eerste kernraket zou 2019 gereed zijn.

Kenners verwachten dat met behulp van nucleaire aandrijving reizen naar bijvoorbeeld Mars niet bijna een jaar, maar slechts enkele weken duren. Deze korte reistijd voorkomt bijvoorbeeld gezondheidsproblemen waar onheilsprofeten voor waarschuwen.

Bron: RIA Novosti, Baikonur

Altijd al willen weten wat er met de aarde gebeurt als je die twee keer zo groot maakt?

Maak je eigen planeet

Hoe zou de aarde er uit zien als de zon een rode dwerg is? Zou Mars leefbaar worden als de planeet een stuk groter is dan nu? NASA heeft  een online applicatie ontwikkeld om je eigen exoplaneet te ontwerpen. Vanaf gloeiend hete Jupiter tot bevroren ijsdwerg, je droomwereld is door wat sliders te verschuiven samen te stellen. Dat niet alleen, het resultaat is te downloaden.

Altijd al willen weten wat er met de aarde gebeurt als je die twee keer zo groot maakt?
Altijd al willen weten wat er met de aarde gebeurt als je die twee keer zo groot maakt?

NASA Extreme Planet Makeover

Tijdens de Deep Impact missie werd er een gat in een komeet geschoten. En interplanetair internet uitgetest.

Interplanetair internet op Mars en de maan

Internet heeft zich sinds de komst van het world wide web als een olievlek verspreid. Zelfs zuidpoolonderzoekers kunnen nu de hele dag (en die duurt daar erg lang) de meest  zinloze Youtube filmpjes downloaden. Maar… the world is not enough…

Internet vormt de grootste bibliotheek ter wereld, ooit, vierentwintig uur per dag toegankelijk. Met internettoegang heb je overal ter wereld toegang tot deze bibliotheek. De weg zoeken in die bibliotheek is een ander verhaal, maar weet je eenmaal waar de informatie te vinden is dan kan je in principe zelfs de lastigste technische problemen oplossen. Kortom: precies waarover je in de ruimte wilt kunnen beschikken.

Lichtsnelheid
Geen wonder dus dat visionairen over de hele wereld hebben nagedacht over manieren om internet uit te breiden over het zonnestelsel. Het voornaamste technische probleem is de lichtsnelheid.  De maan ligt op ‘maar’ 1,3 lichtseconde afstand van de aarde, maar communicatietijden lopen op tot langer dan een uur voor Jupiter en verder.

Tijdens de Deep Impact missie werd er een gat in een komeet geschoten. En interplanetair internet uitgetest.
Tijdens de Deep Impact missie werd er een gat in een komeet geschoten. En interplanetair internet uitgetest.

Het internetmodel waarin informatie vaak meerdere keren heen en weer wordt gestuurd werkt daarom niet in de ruimte.  Interplanetair internet is daarom in kleinere subnets verdeeld (bijvoorbeeld alle maanrovers, satellieten en maanbases). Aanvragen binnen deze subnets worden real-time afgehandeld. Een werkgroep van NASA, ESA en andere ruimtevaartorganisaties, de Consultative Committee for Space Data Systems (CCSDS) heeft voor deze kortere afstanden Space Communications Protocol Specifications (SCPS) ontwikkeld dat veel lijkt op het op internet gebruikte IPv4.

Vertragingstolerante netwerken
Voor de enorme afstanden in het zonnestelsel werkt dit niet: zodra het verzoek van de zender is ontvangen moet de ontvanger in één keer de gevraagde informatie sturen in plaats van, zoals op internet, eerst contact te zoeken met een DNS server. Op, zeg, Jupitermaan Ganymedes ben je op die manier al gauw een week bezig om een enkele webpagina met plaatjes te downloaden.  Om die reden is een heel ander netwerkmodel nodig dan het zeven-lagen OSI model dat aan de basis ligt van internet.  De bovenste lagen zijn vervangen door “bundle service layering”. Hierbij wor4dt gebruik gemaakt voor een door NASA en defensieoonderzoeksbureau DARPA ontwikkelde uiterst fouttolerante communicatiemethode, delay-tolerant networking (DTN). DTN gooit bij zeer lange communicatie-onderbrekingen pakketjes niet weg, zoals TCP/IP van internet, maar bewaart ze en verstuurt ze opnieuw als de satelliet weer binnen bereik is. DTN is al succesvol uitgetest op aarde, waarbij communicatie met Mars is gesimuleerd. DTN is ook getest tijdens de Deep Impact missie naar een komeet op vele miljoenen kilometers afstand. Verbindingen hoeven niet meer met de hand te worden gelegd. Houston kan lekker gaan slapen.

DTN kent een nog interessantere optie. Grote hoeveelheden data kunnen naar een knooppunt worden gestuurd. Als een ruimteschip in de buurt van het knooppunt arriveert, kan het de ‘postbus’ legen en nieuwe data ter verzending klaarzetten. Dus al zijn ruimtereizen lang en eenzaam, af en toe is er een plezierige verrassing…

De Lagrangepunten rond bijvoorbeeld de aarde. Het L1 punt ligt tussen de aarde en de zon. OP het L2 punt is de aantrekkingskracht van aarde en zon even groot. L4 en L5 zijn plekken waar ruimtepuin zich ophoopt.

Luchtkastelen bouwen

Er zijn al meerdere ruimtestations gebouwd: Skylab, Mir en nu het internationale ruimtestation ISS. Al deze ruimtestations werden bevoorraad vanaf en bevonden zich in een omloopbaan om de aarde. Er zijn interessantere plekken voor ruimtestations: de Lagrangepunten. En de ruimte is letterlijk onbegrensd. Een overzicht van voor- en nadelen van het koloniseren van outer space.

De Lagrangepunten rond bijvoorbeeld de aarde. Het L1 punt ligt tussen de aarde en de zon. OP het L2 punt is de aantrekkingskracht van aarde en zon even groot. L4 en L5 zijn plekken waar ruimtepuin zich ophoopt.
De Lagrangepunten rond bijvoorbeeld de aarde. Het L1 punt ligt tussen de aarde en de zon. OP het L2 punt is de aantrekkingskracht van aarde en zon even groot. L4 en L5 zijn plekken waar ruimtepuin zich ophoopt.

In plaats van een bestaand hemellichaam te kiezen kunnen ruimtekolonisten hun eigen kolonie zwevend in de ruimte bouwen. Dat heeft verschillende voordelen.
De plaats is vrij te kiezen.
Ook is de kolonie makkelijk te verplaatsen als daar reden voor is.

Het kost (afgezien van de omloopbaan van het ruimtestation bereiken) weinig brandstof om van of naar een ruimtestation te reizen, omdat dit nauwelijks zwaartekracht bezit.

De zwaartekracht is vrijwel nul, wat ideaal is om bepaalde gevoelige kristallisatieprocessen en andere microzwaartekrachtstechnieken uit te kunnen voeren. Gevaarlijke experimenten en productieprocessen zijn in de lege ruimte aanmerkelijk veiliger uit te voeren dan op aarde.

Vooral de Lagrangepunten zijn interessant. Dit zijn punten waar de zwaartekracht objecten in evenwicht houdt.

Nadeel is zoals overal in de interplanetaire ruimte dat er geen bescherming is tegen meteorieten, zonnewind, zonnestormen, kosmische straling en dat grondstoffen van miljoenen kilometers afstand moeten worden gehaald.

Voor een langer verblijf moeten ruimtestations dan ook goed worden afgeschermd tegen kosmische straling en (micro) meteorieten.

Lagrangepunten factsheet

Grootte: wiskundig punt (in de praktijk duizenden kilometers)

Zwaartekracht: 0

Atmosfeer: geen; zonnewind

Temperatuur: duizenden graden (vlakbij zon) tot enkele graden boven het absolute nulpunt (Oortwolk en Kuipergordel)

Daglengte: naar wens (bijvoorbeeld aardnormaal)

Lengte jaar: 365,25 dagen (Lagrangepunten aarde)

Waardevolle grondstoffen: zonneënergie, zonnewind, nabij ruimtepuin

Pluspunten: nabijhejd aarde, lage zwaartekracht, vacuüm, constructievrijheid, asteroïden

Gevaren: kosmische straling, meteorieten, grote temperatuursverschillen

De omgeving

Elk hemellichaam dat rond een ander hemellichaam draait kent vijf Lagrangepunten: punten waar de zwaartekracht van bijvoorbeeld aarde en zon elkaar opheffen. Punt L1 is het punt tussen aarde en zon waar de aantrekkkingskracht van aarde en zon elkaar in evenwicht houden. L2 is het punt achter de aarde waar de zwaartekracht van zon en aarde even sterk is. Hier zal de NASA-ruimtetelescoop James Webb komen te hangen. L3 ligt precies tegenover de aarde, de plek dus waar de aarde zich een half jaar geleden bevond.

Als de aardscheerder Eros (34 x 11 x 11 km) op aarde terecht komt, is het einde oefening. We kunnen deze lastige ruimteaardappel beter uithollen en ombouwen tot knusse ruimtekolonie.
Als de aardscheerder Eros (34 x 11 x 11 km) op aarde terecht komt, is het einde oefening. We kunnen deze lastige ruimteaardappel beter uithollen en ombouwen tot knusse ruimtekolonie.

L4 en L5 liggen eveneens op de omloopbaan van de aarde rond de zon (op een zesde omloopbaan voor en na de aarde). Dit zijn punten waar zich ruimtepuin ophoopt: in het geval van de aarde ruimtestof. Jupiter en Neptunus, bijvoorbeeld, houden er indrukwekkende asteroïdenverzamelingen in hun L4 en L5 punten op na. Alleen de L4 en L5 punten zijn stabiel: materie in de omloopbaan van de aarde wordt er naar toe getrokken. Een ruimtestation hier blijft in principe tot het einde van het zonnestelsel hangen. De andere Lagrangepunten zijn instabiel en vereisen wel voortdurende, minieme bijsturing, alhoewel een quasiperiodieke, sikkelvormige halo omloopbaan in de buurt van een Lagrangepunt mogelijk is.

Een ruimtestation kan ook in een baan om een hemellichaam draaien of zelfstandig rond de zon draaien. Alle drie ruimtestations die ooit gebouwd zijn draaiden (ISS draait nog steeds) in een omloopbaan om de aarde op enkele honderden kilometers hoogte. Hier beschermt het aardmagnetisch veld de astronauten nog.

Hoe kom je er?

De Lagrangepunten rond de aarde liggen binnen het bereik van bestaande raketten. De punten voor en achter de aarde zijn binnen enkele dagen te bereiken, de punten op een zesde omloopbaan afstand van de aarde in enkele maanden. Het L3 punt vergt een langere reis. De L3, L4 en L5 punten vragen vanaf de aarde weinig brandstof om te bereiken omdat ze zich in de omloopbaan van de aarde bevinden.

Hoe bewoonbaar zijn de Lagrangepunten?

Een ruimtekolonie volgens NASA. De enorme ramen zorgen voor zonlicht.
Een ruimtekolonie volgens NASA. De enorme ramen zorgen voor zonlicht.

Een ruimtepak onder druk, bescherming tegen de felle zonnewind en kosmische straling zijn absoluut vereiste. Zonder ruimtepak houdt een mens het ongeveer een minuut uit in de ruimte. Een ruimtebasis zal voorzien moeten zijn van een stevige beschermlaag om kosmische straling en micrometeorieten af te weren. Grotere meteorietfragmenten moeten door bijvoorbeeld een laserafweersysteem op tijd worden afgeweerd. Een betrouwbaarder, maar duurder alternatief is een metersdikke beschermlaag van waterijs. Om kunstmatige zwaartekracht op te wekken  zal het ruimtestation moeten roteren. Dit voorkomt dat de bewoners zullen gaan lijden aan botontkalking en spierdystrofie.

 

Wat zijn de voordelen ?

Voor industriële productie zijn de Lagrangepunten ideaal: lage zwaartekracht, vacuüm en geen klagende omwonenden. Ook voor mensenschuwen, onwettige activiteiten en sektes is deze locatie ideaal. Met grote zonnepanelen is in principe bijna oneindig veel energie op te wekken. Bij sommige ontwerpen wordt energie opgewekt uit elektrisch geladen deeltjes uit de zonnewind.

Gevaren op de Lagrangepunten

De ruimte kent geen beschermend magnetisch veld of atmosfeer. Zelfs het L2-punt achter de aarde is te ver om de zon helemaal af te dekken, dus zonnewind en zonnestormen zijn een probleem. Ruimtestations op enkele honderden kilometers hoogte boven de aarde worden nog beschermd door het aardmagnetisch veld. Micrometeorieten hebben een grotere bewegingsenergie dan kogels. Kent je ruimtepak of ruimtestation een lek en kan je dat niet dichten, dan ben je ten dode opgeschreven.

Hoe zou een kolonie in de buurt van de Lagrangepunten er uit zien?

De lanceerkosten vanaf de aarde zijn zeer hoog. Het goedkoopste is daarom om zoveel mogelijk gebruik te maken van materiaal van naburige asteroïden, zoals de gevaarlijke aardscheerders: asteroiden met een onregelmatige baan die de aarde kunnen treffen. Sommige astronomen hebben voorgesteld om een complete asteroïde (de aardscheerder Eros zou erg geschikt zijn) uit te hollen, vol te pompen met lucht en tot ruimtestation om te bouwen.  Om voldoende kosmische straling tegen te houden moeten de wanden van de ruimtebasis enkele meters dik zijn (of de basis ondergronds worden aangelegd). De ruimtebasis moet langzaam rondwentelen zodat de bewoners door de middelpuntvliedende kracht tegen de buitenwand worden gedrukt.

Hoe zijn de Lagrangepunten tot leefbare wereld om te bouwen?

De enige praktische oplossing is een ruimtestation te bouwen en dat volpompen met een adembare atmosfeer. Er is geen lichaam met voldoende zwaartekracht om ook maar enige atmosfeer vast te houden.
De zeer fantasierijke SF-schrijver Larry Niven schreef zijn beroemde Ringwereldromans over een enorme ring, op de omloopbaan van de aarde bijvoorbeeld, gebouwd door een ras van aliens, die ronddraaide, een kunstmatige zwaartekracht opwekte en zo de lucht tegen hoge opstaande muren drukte. We kennen op dit moment geen materiaal dat sterk genoeg is om de krachten die daar voor nodig zijn te weerstaan. Ook is er in het hele zonnestelsel onvoldoende materiaal, of we moeten Jupiter en een deel van de zon uit elkaar slopen. Sorry, Larry.

Jammer. De bewoonbare oppervlakte zou wel enorm zijn, bij een breedte van 20.000 km gelijk aan tien biljard keer Nederland (dat is een één met zestien nullen er achter).

Zo zou Ringwereld er uit zien: een ring die de hele omloopbaan van de aarde omspant, miljarden keer de oppervlakte van de aarde.
Zo zou Ringwereld er uit zien: een ring die de hele omloopbaan van de aarde omspant, miljarden keer de oppervlakte van de aarde.
De beroemde ringen van Saturnus zijn vermoedelijk afkomstig van een door Saturnus uit elkaar getrokken maan.

Ringen Saturnus ontstaan door gecrashde maan

Volgens berekeningen van wetenschappers blijken de ringen ontstaan door de vernietiging van een maan ter grootte van de Saturnusmaan Titan, 5000 km doorsnede.

Volgens de berekeningen vond de ramp 4,5 miljard jaar geleden plaats, vlak na het ontstaan van de aarde.
De ringen en de ijsmaantjes in het ringenstelsel zijn het overblijfsel van de ijsachtige schil. De rotsige kern werd opgeslokt door Saturnus.

De beroemde ringen van Saturnus zijn vermoedelijk afkomstig van een door Saturnus uit elkaar getrokken maan.
De beroemde ringen van Saturnus zijn vermoedelijk afkomstig van een door Saturnus uit elkaar getrokken maan.

De maan werd afgeremd door de toen nog aanwezige gasenvelop rond Saturnus en bewoog naar binnen. De getijdekrachten, die op aarde eb en vloed veroorzaken, kneedden de maan tot het ijs smolt. Na ongeveer tienduizend jaar bereikte de maan het punt, de Roche-limiet, waarop de getijdekrachten zo sterk werden dat de maan in stukken gebroken wordt. De ijsfragmenten en het gesmolten water werden langzamerhand van de maan los getrokken en belandden in de ring, terwijl de zwaardere rotskern langer zijn samenhang behield en werd opgeslokt door de planeet.
De gasenvelop is ondertussen verdwenen: opgeslokt door Saturnus of weggeblazen door de zonnewind.

Deze nieuwe theorie verklaart waarom het ringenstelsel van Saturnus voor 95% uit ijs bestaat en niet voor een groot deel uit rots. Ook verklaart de theorie waarom zich dicht bij Saturnus ijsmaantjes vormden, terwijl manen die verder van de planeet staan veel rots bevatten.
De definitieve test van deze theorie volgt in 2011 als ruimtesonde Cassini de massa van de ringen gaat meten.

Bron: Nature

Felisa Wolfe verzamelt monsters bij het Mono Lake.

Arsenicum-gebaseerd leven ontdekt op aarde?

Uit de volgorde van sprekers op de NASA-persconferentie is af te leiden dat waarschijnlijk het bestaan van arsenicum-gebaseerd leven op aarde wordt onthuld.

NASA kondigt een persconferentie aan aanstaande donderdag. De sprekerlijst is als volgt:

– Mary Voytek, director, Astrobiology Program, NASA Headquarters, Washington
– Felisa Wolfe-Simon, NASA astrobiology research fellow, U.S. Geological Survey, Menlo Park, Calif.
– Pamela Conrad, astrobiologist, NASA’s Goddard Space Flight Center, Greenbelt, Md.
– Steven Benner, distinguished fellow, Foundation for Applied Molecular Evolution, Gainesville, Fla.
– James Elser, professor, Arizona State University, Tempe

Dat Mary Voytek als eerste spreekt, is logisch. Zij is de directeur van het NASA astrobiologie programma.
Interessant is nummer twee, Felisa Wolfe-Simon.

Felisa Wolfe verzamelt monsters bij het Mono Lake.
Felisa Wolfe verzamelt monsters bij het Mono Lake.

Felisa doet onderzoek naar bacteriën in het arsenicumrijke Mono Lake die volgens haar in hun DNA geen op fosfor gebaseerde nucleïnezuren hebben, maar de fosfor vervangen door arsenicum. In een uitzending van VPRO Labyrint werd kort geleden al aangekondigd dat ze binnenkort met resultaten naar buiten zou komen in die richting.
Het ontdekken van een organisme op aarde dat gedijt op het voor mensen dodelijke gif arsenicum in plaats van fosfor zou een revolutie in de biologie betekenen en zeker enorme gevolgen hebben voor de zoektocht naar buitenaards leven.

UPDATE: een tweetal valsspelende Britse kranten heeft onthuld dat het inderdaad gaat om de ontdekking van een bacterie die op arseen leeft in plaats van op fosfor.

UPDATE 2:  een ander onderzoeksteam heeft de arseenbacterie voortgekweekt in een voedingsoplossing met arsenicum en heeft het DNA geanalyseerd. Zoals het er nu naar uitziet, bevat het DNA geen arseen. Toch geen leven, mede gebaseerd op arseen?