zon

Zonnekokers maken gebruik van geconcentreerd zonlicht. Mogelijk gaan we concentrators nog veel meer zien nu onderzoekers een manier hebben ontdekt om met glas zonlicht rechtstreeks in stroom om te zetten.

Zonlicht omgezet in elektriciteit zonder zonnecel

In een baanbrekende ontdekking zijn onderzoekers van de universiteit van Michigan er in geslaagd om een proces te ontwikkelen om zonlicht in elektriciteit om te zetten zonder gebruik te hoeven mken van halfgeleiders. In principe is zelfs een materiaal als vensterglas voldoende.

Zonnekokers maken gebruik van geconcentreerd zonlicht. Mogelijk gaan we concentrators nog veel meer zien nu onderzoekers een manier hebben ontdekt om met glas zonlicht rechtstreeks in stroom om te zetten.
Zonnekokers maken gebruik van geconcentreerd zonlicht. Mogelijk gaan we concentrators nog veel meer zien nu onderzoekers een manier hebben ontdekt om met glas zonlicht rechtstreeks in stroom om te zetten.

Halfgeleiders niet meer nodig
Bestaande zonnecellen werken door middel van halfgeleiders. Een elektron absorbeert een foton en gebruikt de energie in het lichtgolfpakketje om over een barrière heen te springen Door het elektron weer terug te laten vloeien wordt stroom opgewekt. Helaas is dit proces niet erg efficiënt (de maximale opbrengst bij één laag ligt rond de 31%) en zijn halfgeleiders erg kostbaar.
Onderzoekers van de universiteit van Michigan beweren nu een fundamenteel nieuw principe te hebben gevonden om stroom uit zonlicht te halen. Hierbij maken ze gebruik van het feit dat licht bestaat uit een elektrisch en een magnetisch veld die elkaar voortdurend afwisselen. In de bestaande toepassingen wordt gebruik gemaakt van het elektrische veld. De onderzoekers ontdekten echter dat in een isolator (een materiaal dat geen stroom geleidt, zoals vensterglas), het magnetische effect honderd miljoen maal sterker is dan tot dusver gedacht. Zo sterk zelfs dat het vergelijkbaar is met het elektrische effect.
Saillant detail: dit effect is voor meer dan een eeuw over het hoofd gezien. En dat opent mogelijkheden.

Magnetisch effect wekt cumulatieve spanning op
Door de magnetische effecten krijgen de elektronen een C-vorm, waardoor een dipool (gesplitste positieve en negatieve lading) ontstaat. De C’s verschuiven langzaam. Wanneer voldoende van deze C’s achter elkaar komen te staan, worden de zwakke voltages bij elkaar opgeteld en kan de ontstane spanning af worden getapt. Er zijn nog wel enkele technische problemen. Zo vereist standaard glas een lichtintensiteit van tien miljoen watt per vierkante centimeter om dit effect op te wekken. Ter vergelijking: midden op de dag aan de rand van de atmosfeer is de zonne-intensiteit 0,14 watt per vierkante centimeter, bijna honderd miljoen zo weinig dus. Bij zeer hoge intensiteiten krijg je in optische materialen veranderingen in brekingsindex, wat leidt tot focusing en mogelijk smelting van het transparante medium, maar mogelijk hebben de onderzoekers hier toch rekening mee gehouden.

De onderzoekers denken het lichtintensiteit-probleem op te kunnen lossen door een ander materiaal te kiezen waarbij de minimum intensiteit dichter in de buurt komt van die van zonlicht. Een groot deel van de energiekloof is te overbruggen door zonlicht te concentreren. Op dit moment wordt in het experiment ongeveer 1% van laserlicht in elektriciteit omgezet. De onderzoekers verwachten dat met andere materialen de efficiëntie op kan lopen tot tien procent, de efficiëntie van goedkope zonnepanelen. Het grote voordeel van dit principe is dat geen verfijnde technologie nodig is, maar dat met goedkope bulkmaterialen kan worden gewerkt. Dit zou, als de onderzoekers inderdaad slagen in het vinden van goedkope materialen met verbeterde opto-magnetische eigenschappen, wel eens de doorbraak kunnen zijn waarop zonne-energie enthousiasten al die jaren hebben gehoopt. Eindelijk een einde aan smerige olie, stinkende kolencentrales en levensgevaarlijke kernenergie?

Bronnen
Zaplog
Science Daily
University of Michigan
Journal of Applied Physics

Kernfusie vindt alleen in de dichte (hier witte) kern plaats. De rest van de zon geleidt de energie naar buiten. Wij zien alleen de zeer dunne fotosfeer.

Kernfusie: het geheim van de zon

De zon geeft ons aardbewoners 98% van alle energie waarover we kunnen beschikken. En dat al bijna vijf miljard jaar lang. Wat is het proces waarmee de zon die onvoorstelbare hoeveelheden energie opwekt en kunnen we zelf een eigen zon op aarde opwekken?

Kernfusie: de energiebron van de zon
Sterren in de hoofdreeks, zoals onze zon, zijn enorme gasbollen die in hun centrum zo dicht en heet (miljoenen graden en honderden keren zo dicht als water) zijn, dat de atoomkernen van waterstof, protonen, via verschillende tussenstappen samen kunnen smelten tot helium: kernfusie.

Het geheim van de zon: door waterstofkernen samen te smelten tot heliumkernen komt er ongelofelijk veel energie vrij.
Het geheim van de zon: door waterstofkernen samen te smelten tot heliumkernen komt er ongelofelijk veel energie vrij.

Deze hoeveelheid energie is werkelijk gigantisch groot: als je in een gram water (ongeveer een halve vingerhoed) alle waterstofatomen uit het water (H2O, waterstof dioxide) samensmelt tot helium levert dat ongeveer twintigduizend kilowattuur aan energie op: tien jaar stroom voor een huishouden of evenveel als het verbranden van tweeduizend liter benzine (voldoende om de wereld helemaal mee rond te rijden in een gemiddelde auto) oplevert.

Logisch ook: bij het verbranden van benzine hergroepeer je alleen atomen (benzinemoleculen (octaan, benzeen e.d.) en zuurstofmoleculen veranderen in kooldioxide en water), maar de atomen zelf blijven behouden. Bij kernfusie maak je compleet nieuwe atomen die eerst nog niet bestonden (en vernietig je de uitgangsatomen).

Het samensmelten van atoomkernen is echter extreem moeilijk, dit omdat atoomkernen elkaar afstoten. Ze iets te hard op elkaar afschieten betekent dat ze terugkaatsen voor ze hebben kunnen samensmelten, is de snelheid te laag dan komen ze niet eens bij elkaar in de buurt. Reden dat er helaas nog steeds geen kernfusiecentrales zijn. Zouden we het geheim van de zon kunnen kraken en op aarde kernfusie opwekken, dan zou een tijdperk van onovertroffen rijkdom en welvaart aanbreken, want met voldoende energie kan je zelfs materie maken uit het niets. Als dat al nodig is, want je kan alle atomen die je nodig hebt uit de aarde, lucht of desnoods uit zeewater vissen.

Omdat vier waterstofkernen samen iets zwaarder zijn dan één heliumkern, wordt 0,7% van de massa in energie omgezet: de bron van alle zonne-energie. Bij dergelijke hoge temperaturen bestaan er geen atomen meer. In de kern van de zon en andere sterren zwerven elektronen en atoomkernen door elkaar en botsen geregeld met elkaar. Het goedje dat dan ontstaat wordt daarom elektronenvloeistof genoemd.

Waterstofbom of kerncentrale?
In feite is een ster een waterstofbom, die van ontploffen af wordt gehouden door een evenwicht van twee krachten. Aan de ene kant is er de zwaartekracht, die bij een zwaar ding als een ster enorm sterk is en deze wil laten instorten. Aan de andere kant is er de extreme hitte, die het plasma laat uitzetten. Het evenwicht tussen deze twee krachten wordt bepaald door twee energiestromen: aan de ene kant de snelheid waarmee kernfusie plaatsvindt en aan de andere kant de snelheid waarmee energie weglekt als straling.

Hoe groter de ster, hoe groter de dichtheid en hoe sneller de kernfusie. Als gevolg hiervan wordt het heter en zet de kern uit. Daardoor neemt de fusiesnelheid weer af, ook kan energie makkelijker weglekken omdat de kern groter wordt en dus meer oppervlak heeft, waardoor er meer straling weglekt. Een soort natuurlijke zelfregelende kernfusiecentrale dus. Veel mensen vinden daarom dat we niet zo moeilijk hoeven te doen. De zon doet dit werk immers al voor ons. We hoeven alleen maar het zonlicht op te vangen met een zonnepaneel.

Een zon op aarde
Zonnepanelen zijn duur en hebben veel oppervlak nodig.

Kernfusie vindt alleen in de dichte (hier witte) kern plaats. De rest van de zon geleidt de energie naar buiten. Wij zien alleen de zeer dunne fotosfeer.
Kernfusie vindt alleen in de dichte (hier witte) kern plaats. De rest van de zon geleidt de energie naar buiten. Wij zien alleen de zeer dunne fotosfeer.

Gezien de ongelofelijke hoeveelheden energie die kernfusie oplevert is het daarom niet verwonderlijk dat uitvinders likkebaardend aan methoden denken om zelf kernfusie op te wekken. Helaas is het niet eenvoudig een kernfusiereactie op gang te houden. De zon nadoen gaat niet: geen enkel bekend materiaal is bestand tegen veertien miljoen graden hitte. Ook zonachtige drukken liggen nog ver buiten bereik, we bereiken nu met pijn en moeite de druk in de kern van de aarde. Uiteraard zijn uitvinders niet voor één gat te vangen en verzonnen toch allerlei listige methodes om kernfusie toch te laten werken.

De kansrijkste lijkt de in de Sovjet-Unie uitgevonden tokamak te zijn: een donutvormige fusiereactor met een heel dun, extreem heet plasma van deuterium en tritium (waterstof, maar dan met één resp. twee neutronen in de kern extra). Sterke magneetvelden voorkomen dat de geladen plasmadeeltjes ontsnappen. De resultaten zijn nog steeds niet denderend, maar kruipen steeds dichter bij het break-even punt dat er meer elektriciteit uitkomt dan er in wordt gestopt. Zouden tokamaks inderdaad de oplossing vormen voor ons energieprobleem of moeten we een andere methode voor kernfusie verzinnen? Er zijn inderdaad wat slimmere alternatieven bedacht…

Deze spectaculaire zonneuitbarsting is tientallen keren groter dan de aarde.

Een vernietigende zonnestorm: de gevolgen

Zestien en zeventien februari 2011 maakten we kennis met een zonnestorm, het gevolg van een uitbarsting die op de aarde is gericht. Toen de wolk geladen deeltjes de aardse magnetosfeer raakte werden GPS-verbindingen in China verstoord. Dit was echter nog onschuldig. Wat zijn de gevolgen van een echt vernietigende zonnestorm? De gebeurtenissen van 1859 en 1989 tonen aan dat we maar beter stevige maatregelen kunnen nemen…

Zonnevlammen en coronal mass ejections
Onze zon, een G-ster, is naar melkwegbegrippen een rustige, beschaafde ster. Bij rode dwergen (M-sterren), de kleinste stersoort  die samen ongeveer driekwart van alle sterren uitmaken, komen zonnevlammen veel vaker voor en zijn ook relatief veel groter dan op de zon. Een zonnevlam is een magnetische uitbarsting op de zon en ontstaat (denkt men) doordat magnetische velden zich in één klap ontwarren (de zon, een gasbol, draait niet overal even snel rond, wat de magnetische velden in de knoop legt). Kleine zonnevlammen komen heel veel voor. Ze volgen net als zonnevlekken een elfjarige cyclus (2009 was bijvoorbeeld een zonnevlekkenminimum).

Deze spectaculaire zonneuitbarsting is tientallen keren groter dan de aarde.
Deze spectaculaire zonneuitbarsting is tientallen keren groter dan de aarde.

Vaak, maar niet altijd, komt tegelijkertijd met een zonnevlam ook een CME (“coronal mass ejection“) voor. Men denkt daarom dat zowel zonnevlammen als CME’s het gevolg zijn van hetzelfde magnetische verschijnsel, de ontwarring van het magnetische veld. Er ontstaat dan een enorme boog gloeiend plasma, een protuberans, die uiteindelijk met hoge snelheid wordt weggeslingerd als een reusachtige wolk geladen deeltjes. Als die wolk het aardse magneetveld raakt (gelukkig is dat meestal niet het geval), wordt dit samengedrukt en verandert het veld snel van sterkte, wat enorme elektrische spanningen oplevert, dus sterke elektrische stromen in stukken metaal: een geomagnetische storm. Het noorderlicht is dan zichtbaar tot vlak bij de evenaar.

Brand in telegraafkabels en massale stroomuitval
De grootste zonnestorm van de afgelopen vijfhonderd jaar (dat weten we door analyse van ijs in Groenland, waar radioactieve isotopen van de zonnestorm in zijn aangetroffen) vond plaats in de nacht van  1 op 2 september 1859. De zon was al weken onrustig en astrono0om Carrington nam tussen de middag op 1 september de grootste uitbarsting ooit waar. Elektriciteit was in die tijd nog een slecht begrepen verschijnsel dat alleen voor eenvoudige dingen als telegraafkabels en deurbellen werd gebruikt. Een telegraaf werkt heel simpel: signalen bestaan uit een opeenvolging van stroomstootjes door een kilometers lange dikke koperen stroomdraad.

Een "coronal mass ejection" in actie. Een grote wolk ionen wordt met hoge snelheid weggeschoten.
Een "coronal mass ejection" in actie. Een grote wolk ionen wordt met hoge snelheid weggeschoten.

De gevolgen bleven dan ook niet uit toen de zonnestorm toesloeg. Er ontstonden gigantische stromen die op veel plekken waar de telegraafkabel langs liep, branden veroorzaakten. Veel telegraafhuisjes vlogen in brand. Een spookachtig verschijnsel was dat op enkele plekken waar de elektriciteitsgeneratoren door waren gebrand, toch nog telegraafverkeer mogelijk was. De reden: de zonnestorm leverde de energie.

Maart 1989 veroorzaakte een kleinere zonnestorm de grootste elektriciteitsuitval in de geschiedenis van de Canadese provincie Quebec. Omdat Quebec voor het grootste deel op het slecht geleidende Canadese Rotsschild ligt, piekten de stromen in de kabels, waardoor transformatoren doorbrandden en miljoenen mensen zonder stroom kwamen te zitten. Ook satellieten kwamen in de problemen. Als gevolg hiervan hebben stroomleveranciers overal ter wereld hun stroomnetten meer zonnevlam-proof gemaakt. Augustus van hetzelfde jaar verstoorde een zonnestorm de effectenhandel in Toronto. Geomagnetische stormen storen ook postduiven en hebben, wijst recent onderzoek uit, ook zekere effecten op mensen. Reden voor URSI (internationale bond voor radio-onderzoek) een onderzoekscommissie in te stellen.

Wat als er een tweede zonnestorm zoals in 1859 komt?
We zijn nu veel afhankelijker van elektriciteit dan anderhalve eeuw geleden. Als wereldwijd een massale beschadiging van elektrische apparatuur optreedt, komen we in één klap in de steentijd terecht, want vrijwel al onze technologie is direct of indirect van elektriciteit afhankelijk. Auto’s werken niet meer, een antieke diesel wellicht uitgezonderd, want alle elektronica is doorgebrand. Treinen, fabrieken, telefoons, internet: alles komt stil te liggen. De fiets wordt het snelste vervoermiddel. Paradoxaal genoeg zullen technisch minder ontwikkelde landen het veel beter doen. Daar is nog negentiende-eeuwse techniek voorhanden om op terug te vallen.

Het is echter de vraag of deze catastrofale beschadigingen ook wereldwijd op zullen treden. Het elektriciteitsnet wordt steeds beter beschermd. Ook hebben overheidseisen nu de kwaliteit van elektronica sterk verbeterd. Er zullen een groot aantal apparaten uitvallen, mogelijk wat vliegtuigen neerstorten, maar over het algemeen zal de schade hiertoe beperkt blijven.

Voorzorgsmaatregelen
De gevolgen, als het misgaat, zijn echter enorm. Het is dus verstandig om voorzorgsmaatregelen te nemen. Veel mensen zijn al bezig met een off-grid, zelfvoorzienende levensstijl. Vergeet echter niet dat door een echt zware zonnestorm mogelijk ook zonnepanelen er aan gaan. Voedselvoorziening wordt een enorm probleem, Nederland is een dichtbevolkt land. Het bewaren van wetenschappelijke en technische kennis wordt uiterst belangrijk, zo kan de beschaving zich weer snel herstellen. Ook moeten er alternatieven worden bedacht voor elektrische apparaten. Draai eens een dag de hoofdschakelaar om en kijk of er stroomloze alternatieven zijn voor die keukenmachine, diepvries, home trainer en andere ongetwijfeld onmisbare hoogtepunten van de consumptiemaatschappij…

Zo ziet de Melkweg er denken astronomen van boven uit.

De galactische seriemoordenaar

Elke zesentwintig tot zevenentwintig miljoen jaar vindt er een massale uitstervingsgolf op aarde plaats. Toeval of niet, maar deze frequentie komt redelijk goed overeen met de punten waarmee de zon (en dus de aarde) het verst verwijderd is van het vlak van onze melkweg.

Uitsterfgolven komen elke 26 miljoen jaar voor. Wat is de oorzaak van deze periodieke natuurramp?
Uitsterfgolven komen elke 26 miljoen jaar voor. Wat is de oorzaak van deze periodieke natuurramp?

Vandaar dat tot voor kort veel wetenschappers geloofden dat er een oorzakelijk verband is. Op dit moment overheerst de scepsis in de wetenschappelijke gemeenschap: juist op de punten waar de invloed van de Melkweg het sterkst is, in het galactische vlak, vindt geen uitstervingsgolf plaats. In new-age kringen gelooft men juist dat het feit dat de aarde nu vlak in de buurt is van het galactische vlak zal leiden tot massale spirituele groei of juist een vernietigende ramp. Men vergeet te verklaren hoe het kan dat dat drie miljoen jaar geleden niet gebeurd is (tenzij je de eerste homo erectus als zodanig ziet). Toen bevond de aarde zich namelijk precies in het galactische vlak…

De melkweg als draaimolen
De zon draait met de rest van het zonnestelsel om de kern van de melkweg. Eén rotatie, een galactisch jaar, duurt tweehonderd tot tweehonderdvijftig miljoen jaar. Anders geformuleerd: een kwart galactisch jaar geleden liepen  er nog grote dino’s rond in onze achtertuin (wat Nederland betreft: zwommen er mosasaurussen). De zon blijft niet braaf in het galactische vlak hangen. Natuurkundige berekeningen en astronomische waarnemingen wijzen er samen op dat de zon een soort golfbeweging maakt: drie keer per galactisch jaar duikt de zon onder het galactische vlak en drie keer per jaar staat de zon er juist boven. De beweging van de zon heeft dus veel weg van de beweging van de bekende kermisattractie waarbij bezoekers een op en neer golvende beweging maken terwijl ze ronddraaien. De vraag is dus: wat zorgt er voor dat just op het moment dat de zon het verst verwijderd is van het galactische vlak, er massale uitsterving optreedt?

Ecliptica beschermt tegen kosmische rampen?
We weten uit metingen dat bij het bereiken van elke maximale uitwijking de aarde wordt getroffen door een vernietigende natuurramp. Van de laatste grote uitsterving, de Krijt-Tertair massaextinctie die een einde maakte aan de dino’s, is de Chicxulub meteoriet als dader aangewezen. Ook het hoge gehalte aan iridium in de Krijt-Tertair grenslaag in gesteente wijst erop dat er een buitenaardse boosdoener verantwoordelijk was. Er zijn in de loop der jaren verschillende theorieën ontwikkeld om te verklaren hoe de positie van de zon ver uit het galactische vlak tot uitstervingen kan leiden.

Zo ziet de Melkweg er denken astronomen van boven uit.
Zo ziet de Melkweg er denken astronomen van boven uit.

1. Oortwolk wordt gedestabiliseerd door grote afstand van de galactische schijf – Volgens deze theorie zorgt op een gegeven moment de grote afstand van het zonnestelsel tot de galactische schijf er voor dat de omloopbanen van de brokken puin in de Oortwolk instabiel worden. Het vlak van het zonnestelsel staat voor een groot deel (62 graden)  recht op het vlak van de melkweg, waardoor  de aantrekkingskracht van de Melkweg de omloopbanen uit evenwicht brengt. Het gevolg: sommige brokken belanden in de binnenste regio’s van het zonnestelsel met uiteindelijk akelige gevolgen voor het leven op aarde. Pre: een duidelijk werkingsmechanisme. Nadeel: de uitsterfpieken zouden in dit geval onregelmatiger moeten zijn dan nu.

2. Verhoogde kosmische straling leidt tot massale uitstervingen – Volgens sommige onderzoekers is het onjuist om meteorietinslagen of vulkaanuitbarstingen alleen de schuld te geven van de massale uitsterfgolven. Zij denken dat op een of andere manier het galactische vlak ons beschermt tegen de heftige straling aan de randen van de galactische schijf – tot het zonnestelsel zich aan de rand van de galactische schijf bevindt. Inderdaad weten we uit recent onderzoek dat interstellair gas en stof veel gammastraling wegvangt. Volgens andere theorieën is de extreem krachtige kosmische straling die we soms meten afkomstig van geladen deeltjes die door het galactische magnetische veld rond de schijf van de Melkweg worden gejaagd. Als de aarde zich in de baan hiervan bevindt, is het voorstelbaar dat dit erg nare gevolgen heeft voor de meeste levende wezens. Hoewel dit de regelmaat mooi verklaart, pleit hier tegen dat in principe de atmosfeer en het aardmagnetisch veld – om niet te spreken over de heliosfeer, het zonnemagnetisch veld en invloedssfeer van de zon – goed beschermen tegen kosmische straling.