‘Grafyn vaak beter dan wondermateriaal grafeen’

Share Button

Grafeen is maar een enkele variant van een groep uit koolstof bestaande platte moleculen. Grafynen bijvoorbeeld blijken een aantal interessante eigenschappen te hebben die op bepaalde punten die van grafeen zelfs overtreffen. Is grafeen nog maar het topje van de ijsberg?

Een materiaal dat tegelijkertijd zo sterk als diamant is en atoomdik. Een goede geleider, vergelijkbaar met een metaal in bepaalde gevallen, makkelijk vervormbaar en nog enkele andere unieke eigenschappen, zoals toepassing in batterijen. Geen wonder dat aan de ontdekkers van grafeen in 2010 de Nobelprijs natuurkunde is toegekend.

‘Grafyn geleidt stroom maar in één richting’
Toch blijkt uit nieuwe computersimulaties dat een weinig bekend verwant materiaal, grafyn, in sommige opzichten interessanter kan zijn dan grafeen. Uit de simulaties blijkt dat de geleidingelektronen in bepaalde typen  grafyn, net als in grafeen, extreem snel reizen, maar, uiterst interessant, slechts in één richting. Van deze eigenschap kunnen technici handig gebruik maken om bijvoorbeeld diodes (gelijkrichters) en snellere transistoren (essentiëkle onderdelen in vrijwel alle elektronica, waaronder computerchips) te maken, aldus de ontdekker theoretisch chemicus Andreas Görling van de Duitse universiteit van Erlangen-Neurenberg. Nu moet met allerlei kunst- en vliegwerk het éénrichtingsverkeer, denk aan het combineren van elektronrijke en arme materialen, kunstmatig opgewekt worden wat de productie arbeidsintensief maakt. Door dit nieuwe materiaal hoeft dat niet meer. Ook werken deze onderdelen veel betrouwbaarder omdat ze van nature de eigenschap al hebben.

Grafeen: een soort atomair kippengaas. Bron: Wikimedia Commons

Grafeen: een soort atomair kippengaas. Bron: Wikimedia Commons

Wat zijn grafeen en grafyn?
Grafeen krijgt zijn bijzondere eigenschappen door zijn afwijkende structuur. Grafeen bestaat uit een vlak van aan elkaar grenzende zeshoeken, met in elke punt van elke zeshoek een koolstofatoom. Een soort atomair kippengaas. Koolstof heeft vier vrije bindingselektronen, maar in grafeen worden er maar drie gebruikt. Het gevolg is dat de bindingen heen en weer wisselen tussen enkele en dubbele binding, waardoor deze extra sterkte krijgen en het materiaal nauwelijks uit elkaar getrokken kan worden.

In grafyn komen ook C=C bindingen voor. Grafynen hebben dan ook niet het regelmatige zeshoekige honingraatpatroon van grafeen. Omdat de dubbele en driedubbele bindingen op allerlei plaatsen kunnen voorkomen, zijn er een enorm aantal potentiële grafynen – met elk andere eigenschappen. Theoretisch chemici doen al sinds de tachtiger jaren onderzoek naar grafynen, maar pas nu is er voor het eerst naar de elektronische eigenschappen gekeken. Elektronica ligt namelijk ver af van de belevingswereld van chemici.

De Dirac kegels in grafeen dwingen de elektronen met een hoge vaste snelheid te bewegen.

De Dirac kegels in grafeen dwingen de elektronen met een hoge vaste snelheid te bewegen.

Dirac kegels
In de meeste elektrische geleiders is de energie van elektronen gelijk aan het kwadraat van hun impuls (dat is massa maal snelheid). De unieke structuur van grafeen maakt dat de elektrische energieniveaus in zogeheten Dirac kegels zijn gestapeld. Het puntje waar beide kegels samenkomen is een vaste combinatie van impuls en energie, m.a.w. elektronen in grafeen hebben daarom altijd dezelfde, hoge, snelheid. Deze bedraagt een significante fractie van de lichtsnelheid.

Görling’s groep heeft deze eigenschappen nu in een computersimulatie bestudeerd, Hierbij ontdekten ze in een bepaalde grafyn – 6,6,12-grafyn,wat een rechthoekig rooster heeft, er nog steeds Dirac kegels bestaan, maar dan in een verwrongen, samengeperste vorm. Het gevolg: elektronen bewegen liever in een bepaalde richting dan in een andere richting.

Nu nog de praktijk
Wel zegt een computersimulatie niet alles. Dit type grafyn zal in werkelijkheid na moeten worden gebouwd en labtests zullen dan uitwijzen of het computermodel klopt. Volgens theoretisch vaste-stof fysicus Mikhail Katsnelson van de Radboud University Nijmegen zijn inderdaad experimenten het definitieve bewijs, maar is de gebruikte techniek, dichtheid-functionele berekeningen, behoorlijk betrouwbaar. Als voorbeeld geeft hij gehydrogeneerde grafeen, een type grafeen dat gebruikt wordt om transistoren te maken. Dit was eerst voorspeld door density-functionele berekeningen en daarna experimenteel geobserveerd.

Dat is echter gemakkelijker gezegd dan gedaan. Grafeen komt van nature voor in grafiet, maar tot nu toe is slechts één type grafyn ook daadwerkelijk gesynthetiseerd en dat was niet het 6,6,12-grafyn van Görlings groep. Görling hoopt nu dat synthetisch chemici de handschoen op zullen pakken en zullen proberen het veelbelovende 6,6,12 grafyn in elkaar te knutselen.

Kortom: het lijkt er dus op dat het wondermateriaal grafeen nog maar het topje van de ijsberg vertegenwoordigt. Er ligt een compleet onmbekende klase van nieuwe high-tech materialen op ons te wachten met vermoedelijk allerlei nog onbekende, maar zeer nuttige elektronische en andere eigenschappen.

Bron:
Graphyne Could Be Better Than Graphene, Science Magazine (2012)

Share Button

Germen

Hoofdredacteur en analist (Visionair.nl) Expertise: biologische productiesystemen (master), natuurkunde (gedeeltelijek bachelor), informatica

Dit vind je misschien ook interessant:

1 reactie

  1. AltijdWat schreef:

    Ik vraag me ook af wanneer koolstof nanobuisjes eens een keer op de markt komt.. Zoveel mogelijkheden. Zelfde zal hier waarschijnlijk gebeuren, duurt vast nog zeker 10 jaar of meer voordat dit in de eerste producten gebruikt word teminste als het inderdaad de toegezegde eigenschappen heeft. Maar als het eenmaal wordt toegepast zal het ook overal toepassingen vinden. Een echt visionaire investeerder zou dan ook in dit soort dingen investeren.

Geef een reactie

Het e-mailadres wordt niet gepubliceerd. Verplichte velden zijn gemarkeerd met *

Advertisment ad adsense adlogger