Universum

Navelstreng van donkere materie verbindt melkwegstelsels

Onderzoekers ontdekten bewijs voor een grote sliert materiaal die onze Melkweg verbindt met nabijgelegen groepen melkwegstelsels. Deze zijn weer verbonden met de rest van het heelal. De intergalactische snelweg?

Slierten gas verbinden sterrenstelsels. Bron: Michael Boylan-Kolchin, University of California Irvine

Het team, waaronder Dr. Stefan Keller, Dr. Dougal Mackey en Professor Gary Da Costa van de Research School of Astronomy and Astrophysics van de Australian National University, publiceerde hun ontdekking in het oktobernummer van Astrophysical Journal.

De onderzoekers kwamen hier achter door de ‘wolk’ van bolvormige sterrenhopen die de Melkweg omringt te analyseren. Door exacte afstandsmetingen kwamen de onderzoekers er achter dat de sterrenhopen niet evenwichtig verspreid zijn, maar een plat vlak vormen.

Ook de dwergstelsels die als satellieten onze Melkweg omringen, denk aan de Grote en de Kleine Magelhaese Wolken, bevinden zich in hetzelfde vlak. In de opmerkelijk dichterlijke woorden van Keller:  “Wat we hebben ontdekt is bewijs voor de kosmische draad die ons verbindt met de uitgestrektheid van het universum. De draad van sterrenclusters en kleine melkwegstelsels rond de melkweg is te zien als de navelstreng die de Melkweg voedde tijdens haar jeugd.”

Zoals al bekend, zijn er twee soorten materie in het heelal: de huis- tuin-  en keukenvariant waar wij uit bestaan en de raadselachtige donkere materie, die we alleen waar kunnen nemen door de immense zwaartekracht – er is naar schatting rond de vier keer zoveel donkere materie als zichtbare materie.

Een gevolg van de Big Bang en de overheersende invloed van donkere materie is dat “normale” materie als een soort schuim op de toppen van een golf, wordt meegesleurd door de donkere materie. Deze vormt enorme, onderling verbonden  vlakken en slierten. De structuur heeft al met al veel weg van een spons.

Daar stopt de overeenkomst. Zwaartekracht sleurt namelijk het materiaal over deze verbindende filamenten naar de grootste opeenhopingen van materie. De bevindingen van Keller en zijn team laten zien dat de bolvormige sterrenhopen en satellietstelsel van de Melkweg dit kosmische filament volgen.

Bolvormige sterhopen zijn sterrenstelsels die uit honderdduizenden zeer oude sterren bestaan, zeer compact opgesloten in een bal. In het beeld dat de drie onderzoekers schetsen, zijn de meeste van deze sterrenhopen de kernen van kleine sterrenstelsels die door zwaartekracht langs de filamenten zijn getrokken. Zodra de melkwegstelsels te dicht in de buurt van de Melkweg komen, worden de meeste sterren opgeslokt en blijft alleen de kern over. Aan wordt genomen dat ons Melkwegstelsel zijn huidige grootte heeft bereikt door honderden van deze dwergstelsels op te slokken.

De ‘navelstreng’ werd afgeknepen doordat enkele miljarden jaren geleden het heelal veel sneller begon uit te zetten. Astronomisch gesproken is ons melkwegstelsel stervende. De stervorming vindt nu veel langzamer plaats dan enkele miljarden jaren geleden, omdat de gasvoorraden in ons Melkwegstelsel voor het grootste deel leeg zijn. Natuurlijk is er nog het nodige gas in de intergalactische leegte, maar er is geen systeem waardoor dit gas wordt geconcentreerd en naar ons melkwegstelsel wordt geleid. Misschien iets voor onze verre nazaten om te ontwikkelen.

Uiteraard maakt dit het raadsel nog groter. Wat is donkere materie, en hoe staat deze in relatie met de rest van het heelal? En, aangezien de kosmische uitzetting zich vooral lijkt te concentreren in de intergalactische leegtes, wat is het proces dat hier verantwoordelijk voor is?

Bron
Australian National University

superintelligentie

Ethische superintelligentie moordt heelal uit

Vermoedelijk is dit het zwartgalligste artikel ooit op Visionair. Al eerder schreven we op Visionair over de Fermi Paradox. Deze komt neer op de vraag: als het heelal zo groot is en er zo veel plaatsen zijn waar leven kan ontstaan, waarom zien we dan geen buitenaardse wezens? Wellicht is het antwoord even simpel als onthutsend, en heeft dit te maken met het toekomstige lot van dit heelal.

De overweldigende doodsheid van het heelal
Overal waar we om ons heen kijken, zien we ongerepte sterren en sterrenstelsels. Nergens sporen van tot Dysonschil omgeturnde sterren of sterrenstelsels. Dit, terwijl het een technologisch geavanceerde beschaving in principe in enkele miljoenen jaren zou lukken een compleet sterrenstelsel om te bouwen tot computronium, materie die geoptimaliseerd is voor berekeningen. Uit gegevens van satellieten als Kepler weten we dat planeten zoals de aarde erg veel voorkomen ook in de bewoonbare zone van sterren. Kortom: het zou in het heelal moeten krioelen van aliens. Er moet dus iets zijn wat aliens stopt om enorme, voor ons zichtbare kunstmatige structuren te bouwen. Dit wordt het Grote Filter genoemd.

superintelligentie
Zou een superintelligentie om volstrekt ethische redenen alle levensvormen uitroeien? – Pixabay

Het heelal als totaal hopeloze plaats
Futurologen en technologen verwachten, op goede gronden, dat in de toekomst kunstmatige intelligentie die van de mens, of zelfs mensheid, vele ordes van grootte zal overtreffen. Stel, dat uit een of andere toekomstige ontdekking onomstotelijk zou blijken, dat het heelal zoals we dat kennen gedoemd is, bijvoorbeeld door een Big Rip. Wat een hyperintelligent wezen ook bedenkt, wat we ook bouwen, de klok tikt genadeloos verder. Vermoedelijk zou dit een enorm demoraliserende invloed hebben op een superintelligentie. Wat voor zin heeft het immers om voortdurend te groeien en te evolueren, als het resultaat al vast staat? Het ligt dan voor de hand om zelfmoord te plegen, in ieder geval niet om een galactisch expansieprogramma op touw te zetten.

De mensheid als baarmoeder voor superintelligentie
Een toekomstig hyperintelligent wezen zal ons vermoedelijk evenveel respecteren als wij platwormen of krekels.
Vanuit het standpunt van een superintelligentie, zijn wij biologische levensvormen alleen interessant als tussenschakel tot het ontstaan van andere superintelligenties. Zonder ons geen techniek, geen computers en dus geen technologische spurt naar superintelligentie. Kortom: wij, en andere intelligente biologische soorten, vormen dus een kraamkamer, een soort vijver met kikkerdril, voor het ontstaan van superintelligentie.

Ethische reden voor het uitroeien van intelligente aliens
Iedere superintelligentie zal gericht zijn op groei en ontwikkeling. Immers, dit is het proces dat deze intelligentie heeft doen ontstaan. Dit moet dus in een cultuur van geloof in vooruitgang zijn geweest. De ondergang van het heelal stopt alle groei, alle ontwikkeling. Geboren worden in een heelal dat alle groei uiteindelijk teniet zal doen, is een doodvonnis. Een superintelligentie zal vermoedelijk willen dat diens soortgenoten niet hetzelfde zal overkomen. De beste manier om dit te voorkomen, is voorkomen dat er superintelligentie ontstaat. Niemand zal er een traan om laten dat een vijver met kikkerdril opdroogt, maar wél, als een mens lijdt aan een aangeboren ongeneeslijke ziekte die leidt tot de dood. Deze foetussen worden nu vaak geaborteerd. Wellicht is de “ethische superintelligentie” om deze reden het gehele zichtbare heelal aan het uitkammen naar tekenen van een technologische beschaving, bijvoorbeeld via een sensornetwerk. Wellicht, om een leven van lijden te voorkomen.

Donkere materie vertraagt binnenste sterren Melkweg

Het gedrag van sterren in het binnenste deel van de Melkweg kan alleen verklaard worden, als er iets als donkere materie bestaat. Dat blijkt uit berekeningen van astronomen.

Dat iets als donkere materie bestaat, hebben astronomen voor het eerst ontdekt door het vreemde gedrag van sterren in sterrenstelsels. Sterren in het buitenste deel van de Melkweg draaien veel sneller rond het centrum van de Melkweg, dan verwacht. Astronomen verklaarden dat door aan te nemen, dat er in het binnenste deel van de Melkweg materie zit die wij niet kennen. Deze oefent wel zwaartekracht uit maar we kunnen deze materie niet waarnemen. Dit is de reden dat dit donkere materie wordt genoemd.

Artist impression van het bovenaanzicht van de Melkweg, uiteraard voor ons zo niet waarneembaar. Nu definitief aangetoond: donkere materie bestaat. Of kan een handige theoreticus nog een uitweg vinden voor de concurrende MOND-theorieën? Bron: NASA (R. Hunt)

Behalve donkere materie is er nog een concurrerende theorie. Deze zegt, dat onze natuurwetten op de schaal van sterrenstelsels niet meer kloppen, althans de zwaartekracht. Deze theorie kon tot nu toe vrij goed de waarnemingen verklaren, zonder aan te nemen dat er donkere materie bestaat. Maar met deze nieuwe waarneming heeft de theorie meer moeite.

Vooral in het allerbinnenste deel van de Melkweg draaien sterren veel langzamer rond dan verwacht .In het galactische centrum bevindt zich een soort balk van sterren. Astronomen hebben van duizenden sterren in deze balk de snelheid bepaald. Uit berekeningen blijkt, dat de rotatiesnelheid van de sterren met 13% afneemt per miljard jaar. Als er zich geen donkere materie in het centrum van de Melkweg zou bevinden, zou niets de sterren kunnen afremmen. maar dat blijkt dus wel degelijk het geval te zijn. De verklaring is, dat sterren om het zwaartekrachtsmiddelpunt (het Lagrangepunt) bewegen. De ronddraaiende sterren dragen via allerlei zwaartekrachtswisselwerkingen hun energie over aan de donkere materie. Daardoor gaat de donkere materie sneller bewegen, maar de sterren langzamer. In de loop van miljarden jaren was het effect spectaculair. De balk draait nu 24% langzamer dan hij in het begin deed. Hoe zou de Melkweg er over een paar miljard jaar uitzien?

Bronnen

  1. Rimpei Chiba, Ralph Schönrich, Tree-ring structure of Galactic bar resonance, Monthly Notices of the Royal Astronomical Society, Volume 505, Issue 2, August 2021, Pages 2412–2426, https://doi.org/10.1093/mnras/stab1094
Donkere materie is alleen indirect waar te nemen. Zoalas hier door het zwaartekrachtslens-effect.

Massa van donkere materiedeeltjes nu veel nauwkeuriger

Theoretisch fysici hebben het mogelijke bereik voor de massa van donkere materiedeeltjes flink ingeperkt. Dit bereik blijkt veel kleiner dan voorspeld. Daardoor hoeven donkere-materiejagers maar met een beperkt aantal deeltjes rekening te houden.

Massa van donkere materiedeeltjes maximaal 20 maal zo groot als elektron

Bij hun berekeningen gingen de onderzoekers er van uit dat alleen de zwaartekracht op de deeltjes inwerkt. Ze berekenden dat de massa van de donkere materiedeeltjes tussen de 0,001 en 10 000 000 eV/c2 moet liggen. Om een indruk te geven: elektronen hebben een massa van 511 000 eV/c2, protonen en neutronen nog eens rond de duizend maal meer. Dat betekent dat de donkere materie-deeltjes maximaal 20 maal zo zwaar zijn als een elektron, of veel lichter

Dat klinkt als een enorme onzekerheid, en dat is het ook. Maar vergeleken met het eerdere massabereik – tussen de 10-24 eV en 1019 GeV (de Planck-massa, waarbij deeltjes direct ineenstorten tot een zwart gat), is dit een zeer sterke afname. Vergelijk een onzekerheid van een getal met vijftig cijfers, met die van tien cijfers. We weten nu bijvoorbeeld dat het hypothetische deeltje X ruim binnen het bereik van onze deeltjesversnellers ligt. Nu kunnen we ook veel gerichter zoeken. Deze schatting is een indrukwekkende prestatie, zeker als je bedenkt dat we alleen de massaverdeling van donkere materie kennen. En verder niets weten.

Kwantumzwaartekracht

Voor het stellen van deze grenzen is gebruik gemaakt van onze bestaande kennis over kwantumzwaartekracht. Dit laat zien dat donkere materie niet ‘ultralicht’ of ‘superzwaar’ kan zijn, zoals sommigen theoretiseren, tenzij er een nog onbekende extra kracht op inwerkt. Dit onderzoek helpt natuurkundigen op twee manieren: het perkt het zoekgebied voor donkere materie enorm sterk in, en het zal mogelijk ook helpen onthullen of er al dan niet een mysterieuze onbekende extra kracht in het universum is.[1]

Zowel de aanhangers van de snaartheorie, als van loop quantum gravity zijn het er over eens dat er iets als kwantumzwaartekracht bestaat. Een groep mensen, waaronder ik, heeft daar vraagtekens bij. En dus ook bij deze uitkomst. Mijn persoonlijke gevoel is, dat zwaartekracht in werkelijkheid de kwantumverstrengeling is tussen reële en virtuele deeltjes. Deze kwantumverstrengeling vermindert dan de vrijheidsgraden van virtuele deeltjes, dus lijkt ruimtetijd in te krimpen. Precies het effect dat je ziet door zwaartekracht. De theorie dat tijd voortkomt uit kwantumverstrengeling is overigens al onderwerp van serieus onderzoek.

De massa van donkere-materiedeeltjes is alleen indirect waar te nemen. Zoals hier door het zwaartekrachtslens-effect.
De massa van donkere materiedeeltjes is alleen indirect waar te nemen. Zoals hier door het zwaartekrachtslens-effect. De reden voor de ringen. Bron: NASA/Wikimedia Commons

Het zichtbare universum bestaat voor slechts vijf procent uit ‘normale’, baryonische materie. Vijfentwintig procent komt voor rekening van donkere materie, terwijl zeventig procent van de totale energie-inhoud van het universum uit donkere energie bestaat.

Bronnen

  1. X. Calmet en F. Kuipers, Theoretical bounds on dark matter masses, Physics Letters B, Volume 814, 10 March 2021, DOI: 10.1016/j.physletb.2021.136068

SPARC, het nieuwe MIT-experiment is veel kleiner dan de enorme reactor ITER, maar moet door de sterkere magnetische velden toch goede resultaten kunnen bereiken. Bron/copyright: MIT

Toekomstige technologie, van 2022 tot het jaar 4000

Sommige toekomstige technologie is er nu al in rudimentaire vorm. Denk aan kwantum computers en wetware, de interface tussen brein en machine. Voorspellen dat deze technologie effectiever en goedkoper wordt, is dus vrij veilig. Of dat deze nieuwe toepassingen krijgt.

Moeilijker te voorspellen is echt disruptieve technologie. Dat is technologie, die de mens vermogens geeft die deze tot nu toe nog niet had. Vooral technologie, die het gevolg is van nieuwe wetenschappelijke doorbraken. Toch doen de makers van deze video, een moedige poging. Dit op basis van bestaande trends en de bekende natuurkundige wetten.

De voorspelling in de video dat de Alcubierre drive werkt, is omstreden. Het effect waarop deze drive berust, is nog niet in een experiment aangetoond. Al vormt het warpveld waarop de Alcubierre drive berust een geldige oplossing van de algemene relativiteitstheorie.

Dat wil zeggen, geldig, als er negatieve energie bestaat op onze schaal, niet alleen maar op de schaal van kleine deeltjes. En er een methode is om deze te scheppen. We kunnen dan ook zelf wormgaten aanleggen. Daarmee zou je in principe zelfs tijd kunnen reizen.

Wormgaten en warp drives zijn nog onbewezen toekomstige technologie, maar in theorie mogelijk. Bron: Genty/Pixabay
Wormgaten en warp drives zijn nog onbewezen toekomstige technologie, maar in theorie mogelijk. Bron: Genty/Pixabay

Vind je nanotechnologie klein? Welnu, het kan nog kleiner. Stel je voor, een complete fabriek opbergen in de ruimte van een atoom. Dat kan in theorie met femtotechniek. Technologie op de schaal van een atoomkern. Mogelijk kunnen we in de toekomst de sterke kernkracht net zo manipuleren als de elektromagnetische kracht nu. Dan zouden er compleet nieuwe technieken ontstaan. En nieuwe kansen. Nieuwe dingen om mee te maken en te onderzoeken. Denk aan een bezoekje aan het binnenste van de zon, of de aarde, bijvoorbeeld. Dat, en nog veel meer, zou dan mogelijk zijn.

Nieuwe natuurwetten, toekomstige technologie

Alles staat of valt met de vraag, of onze natuurkundige wetten, de enige wetten zijn die bestaan. Of dat er mogelijk nog nieuwe wetten bestaan. Inderdaad zijn er dingen die we nog niet kunnen verklaren met de wetten die we nu kennen. Zo hebben we geen flauw idee, wat donkere materie precies is. En waar die enorme ringen vandaan komen in de hemel. Zo groot, dat ze haast wel het restant van een botsing met een ander heelal lijken te zijn. Ontdekken we nieuwe natuurwetten, dan ontdekken we ook enorm veel nieuwe potentiële apparaten.

Teegarden B, een exoplaneet om te koloniseren?

Exoplaneet Teegarden B is in 2017 ontdekt. Het is met een “earth similarity index” van 0,95 de meest aardachtige planeet die we kennen. En is met 12,5 lichtjaar relatief dichtbij.

In ons zonnestelsel zijn maar twee, of misschien drie, planeten met enige moeite bewoonbaar voor de mens. Naast de aarde, Mars en – misschien – de wolken van Venus of de polen van Mercurius. Ver weg van de meestal koesterende, af en toe gevaarlijke stralen van moeder Sol is de keus groter.

Exoplaneten zijn per definitie planeten buiten ons zonnestelsel. Onze nabije buur Proxima Centauri en het Alfa Centauri dubbelstelsel – beide rond de 4 lichtjaar, zijn in theorie bereikbaar. Al moeten we dan in het beste geval rekening houden met een reis van tientallen jaren. En heel erg veel energie proppen in de voortstuwing. Want hoe dichter je de lichtsnelheid nadert, hoe meer energie het kost.

Het koloniseren van exoplaneet Teegarden b is in theorie goed te doen. De planeet ligt in de bewoonbare zone van Teegarden en is minimaal zo groot als de aarde. Vermoedelijk groter. Bron: phl@UPR Arecibo
Het koloniseren van exoplaneet Teegarden b is in theorie goed te doen. De planeet ligt in de bewoonbare zone van Teegarden en is minimaal zo groot als de aarde. Vermoedelijk groter. Bron: phl@UPR Arecibo

Koloniseren exoplaneet Teegarden B

Maar stel, dat we het gaan doen, gewoon, omdat het kan? Deze video verkent de mogelijkheden voor Teegarden B, een exoplaneet die rond een rode dwerg draait op 12,5 lichtjaar afstand[1]. Het “ringwereld”scenario dat de makers van de bovenste video beschrijven is, zo wijzen recente berekeningen uit, wat te pessimistisch. Waarschijnlijker is het “oogbal aarde” scenario. Teegarden B zou dan het meeste weg hebben van een enorme oogbal. Het wit is dan eeuwig ijs. Het bewoonbare deel kent een eeuwige dag, en waarschijnlijk af en toe een heftige zonnevlam. [2] Vele malen heftiger dan onze brave zon produceert.

Bronnen:
1. Teegarden’s Star B, NASA
2. M. Zechmeister et al., The CARMENES search for exoplanets around M dwarfs, Two temperate Earth-mass planet candidates around Teegarden’s Star, Astronomy and Astrophysics, 2019, https://doi.org/10.1051/0004-6361/201935460

De bolvormige sterhoop Messier 80. De centrale zwarte gaten in deze bolvormige sterhopen hebben een voorspelde massa van rond de 30 zonsmassa's.

‘Primordiale zwarte gaten vormen donkere materie’

De zwaartekrachtgolfdetector LIGO ontdekte niet alleen zwaartekrachtgolven. Veel interessanter is waarvan LIGO zwaartekrachtgolven waarnam: zwarte gaten van rond de 30 zonsmassa’s, een formaat dat volgens de gevestigde theorieën helemaal niet kan bestaan. Zou donkere materie uit primordiale zwarte gaten bestaan? En zouden zwarte gaten de missing link zijn voor de evolutie van sterrenstelsels? En de overblijfsels van baby-universa?

De bestaande theorieën voor het ontstaan van zwarte gaten blijken onvolledig

De tot nu toe vóór LIGO ontdekte zwarte gaten vallen ruwweg uiteen in twee grootteklassen. Kleine zwarte gaten van enkele zonsmassa’s, zoals Cygnus X-1, ontstaan door het ineenstorten van zware sterren van enkele tientallen zonsmassa’s.

Ook zijn er de enorme zwarte gaten van miljoenen zonsmassa’s, zoals Sagittarius A*, het zwarte gat in het centrum van onze Melkweg. Deze vormen het centrum van sterrenstelsels. Er zijn geen middelgrote zwarte gaten van bijvoorbeeld  enkele honderden of duizenden zonsmassa’s gevonden, al bestaan deze vermoedelijk in het centrum van bolvormige sterhopen.

Het lichtste grote zwarte gat is meer dan een miljoen zonsmassa’s. De twee door LIGO waargenomen ineengestorte zwarte gaten, die een nieuw zwart gat van 62 zonsmassa’s produceerden, hadden een massa van rond de dertig zonsmassa’s. Er moet een ander mechanisme dan stervorming hiervoor verantwoordelijk zijn. Hetzij de samensmelting van kleinere zwarte gaten van rond de tien zonsmassa’s, hetzij een heel nieuw mechanisme. Bijvoorbeeld primordiale vorming: hypothetische zwarte gaten die vlak na de Big Bang ontstonden. Zouden de twee botsende zwarte gaten primordiale zwarte gaten zijn geweest?

Primordiale zwarte gaten

De kosmische achtergrondstraling blijkt namelijk opmerkelijk korrelig te zijn. De verklaring is volgens astronoom A. Kashlinsky dat clusters zwarte gaten van rond de dertig zonsmassa’s hiervoor verantwoordelijk zijn[1]. Zijn voorspelling is dat vrijwel alle donkere materie uit zwarte gaten bestaat met een vrij nauwe massaverdeling rond deze dertig zonsmassa’s.

De bolvormige sterhoop Messier 80. De centrale zwarte gaten in deze bolvormige sterhopen hebben een voorspelde massa van rond de 30  zonsmassa's. -NASA
De bolvormige sterhoop Messier 80. De centrale zwarte gaten in deze bolvormige sterhopen hebben een voorspelde massa van rond de 30 zonsmassa’s. -NASA

Deze kunnen de zaden hebben gevormd, waar zich bolvormige sterhopen omheen vormden. De hypothetische, maar nog niet waar genomen centrale zwarte gaten in bolvormige sterhopen zijn namelijk ongeveer deze grootte. Deze zijn samengesmolten en vormden de eerste spiraalstelsels. De andere bolvormige sterhopen worden dan weer opgeslokt door grotere spiraalstelsels. Inderdaad bevindt zich rond de Melkweg een halo van bolvormige sterrenstelsels. Mogelijk bestaat de donkere materie daarom uit zwarte gaten waar rond we geen sterren kunnen waarnemen, dus voor ons onzichtbaar zijn. Dit zou ook de raadselachtige uitbarstingen van röntgenstraling verklaren. Elke keer als een zwart gat een zwerfplaneet of ander zwervend galactisch object opslokt, komt een chirp van röntgenstraling vrij.
Voor deze theorie pleit ook dat de sterren in bolvormige sterhopen metaalarm en dus zeer oud zijn: ze zijn echt gevormd uit Big Bang-gas en niet uit restanten van supernova’s.

Baby-universa

Russische en Japanse kosmologen van het instituut Kavli IPMU bij Tokio, hebben deze theorie nu uitgebreid. Die primordiële zwarte gaten zijn niet zomaar zwarte gaten, maar de overblijfselen van ‘doodgeboren’ baby-universa. Van buiten nemen wij deze waar als een zwart gat. Sommige baby-universa bestaan zelfs nog steeds. Van binnen een dergelijk baby-universum lijkt het alsof het uitzet.

Het is lastig om zwarte gaten waar te nemen. Dat kan eigenlijk maar op enkele manieren. De accretieschijf, de zwaartekrachtswerking en hun werking als zwaartekrachtslens. De accretieschijf, de draaikolk van materie die het zwarte gat ingezogen wordt, is alleen waar te nemen als het zwarte gat materie opslurpt. Wat zelden gebeurt. Het heelal is groot en leeg. Dus verzon de groep een list. De Hyper Suprime-Cam (HSC) neemt het naburige Andromeda-stelsel waar. Naburig is hier relatief: twee miljoen lichtjaar. Als er primordiale zwarte gaten voro de lens trekken, kunnen we dat waarnemen als sterren die van plaats veranderen. Dit door de zwaartekrachtlenswerking. Erg veel heeft het onderzoek nog niet opgeleverd, al is er nu wel een ondergrens vastgesteld [2].

Bronnen
1. A. Kashlinsky, LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background Anisotropies, The Astrophysical Journal Letters, 2016
2. Alexander Kusenko, Misao Sasaki, Sunao Sugiyama, Masahiro Takada, Volodymyr Takhistov en Edoardo Vitagliano, Exploring Primordial Black Holes from the Multiverse with Optical Telescopes” by  30 October 2020, Physical Review Letters.
DOI: 10.1103/PhysRevLett.125.181304

Van ziedende lava-oceaan tot ijskoude gasreus, exoplaneten komen voor in alle vormen en maten. Bewoonbare werelden zijn zeldzamer. Bron: Wikimedia Commons uit NASA/Natalie Batalha en Wendy Stenzel

Planeten die gastvrijer zijn dan de aarde ontdekt

De aarde is in veel opzichten een kosmisch lot in de loterij. Zo kennen we geen hete Jupiters, gloeiendhete gasreuzen vlak bij de zon, die de omloopbaan van de aarde verstoren. De aarde bevindt zich in de goudlokjeszone, niet te heet en niet te koud. Maar toch zijn betere plekken dan de aarde denkbaar. Zo staat de aarde in verhouding iets te dicht bij de zon, waardoor we risico lopen droog te koken na een miljard jaar. Er zijn 24 exoplaneten ontdekt die wel precies op de juiste plek van hun centrale ster staan, en daarmee een stuk minder vatbaar zijn voor Snowball Earth of juist een Venus-scenario. In onderstaande video  verkennen we deze planeten.

Zal de mensheid de komende honderd jaar overleven, dan maken we een redelijke kans om de dichtstbijzijnde van deze planeten te kunnen bezoeken. Tenzij er een Zefram Cochrane opstaat die een sneller-dan-licht aandrijving bouwt, of een stargate, zitten we helaas nog voorlopig opgesloten in dit zonnestelsel.

Van ziedende lava-oceaan tot ijskoude gasreus, exoplaneten komen voor in alle vormen en maten. Bewoonbare werelden zijn zeldzamer. Bron: Wikimedia Commons uit NASA/Natalie Batalha en Wendy Stenzel
Van ziedende lava-oceaan tot ijskoude gasreus, exoplaneten komen voor in alle vormen en maten. Bewoonbare werelden zijn zeldzamer. Bron: Wikimedia Commons uit NASA/Natalie Batalha en Wendy Stenzel

De geruchten over samenwerking tussen overheden en buitenaardse wezens blijven hardnekkig. Wat als ze waar zijn? No copyright/plaatje afkomstig van https://pixabay.com/users/comfreak-51581/

Wat als: aliens werkelijk samenwerken met aardse overheden?

De laatste jaren duikt er steeds meer beeldmateriaal op, alsmede rapporten van ooggetuigenverslagen, van ontmoetingen tussen Usaanse piloten en onbekende vliegende entiteiten (UFO’s), die sneller accelereren en van richting veranderen dan vliegtuigen met menselijke piloten zouden kunnen overleven.

Waarheidsgehalte omstreden
Deze beelden zijn afkomstig van de USAF en het Usaanse leger. Deze instellingen vallen onder de Usaanse FOIA (Freedom of Information Act, te vergelijken met de Nederlandse WOB). Hoewel het niet denkbeeldig is dat UFO’s een bewuste desinformatiecampagne zijn van het Pentagon om ongestoord prototypes van experimentele luchtvaartuigen te kunnen testen, zijn deze aanwijzingen te serieus om niet te onderzoeken. Een gepensioneerde Israëlische topofficial, prof. dr. Haim Eshed, schreef een boek waarin hij onthult dat er uitgebreide contacten bestaan tussen een technisch geavanceerde niet-menselijke soort en de Usaanse overheid, en daarmee de Israëlische overheid. Het is niet gezegd dat het verhaal van Eshed klopt – mogelijk spelen er commerciële belangen (Eshed is sf- en fantasyschrijver), is Eshed “gek” [4] of wordt ergens de aandacht van afgeleid – maar we nemen het in dit wat-als scenario voor juist aan. Wat zijn dan de consequenties?

De geruchten over samenwerking tussen overheden en buitenaardse wezens blijven hardnekkig. Wat als ze waar zijn? No copyright/plaatje afkomstig van https://pixabay.com/users/comfreak-51581/
De geruchten over samenwerking tussen overheden en buitenaardse wezens blijven hardnekkig. Wat als ze waar zijn?
No copyright / afbeelding afkomstig van https://pixabay.com/users/comfreak-51581/

Geheimzinnige Galactische Federatie
De uitgelekte informatie uit het boek, afkomstig van een interview in de Hebreeuwse krant Jediot Aharonot[1], is summier. De rest van het Y.A. artikel is weggestopt achter een paywall, maar het googlen van de Hebreeuwse titel leverde een uitvoeriger bron op. [3] Volgens Eshed zijn de aliens afkomstig van een galactische federatie van buitenaardse beschavingen, ruwweg te vergelijken met de Federation of Planets in de beroemde Usaanse SF-franchise Star Trek. Deze aliens zouden in het geheim op aarde rondlopen en met de Usaanse regering samenwerken, waarvan elke Usaanse president op de hoogte is. Beide zouden samenwerken op een basis op Mars, de hoofdvestiging van de aliens in het zonnestelsel. De aliens zouden onder meer het uitbreken van een kernoorlog hebben voorkomen (wat ook door andere bronnen is gemeld)[2]. De aliens zouden tot doel hebben om het wezen van het universum te doorgronden in samenwerking met de mensheid.

Welk nut kunnen de aarde en mensen hebben voor aliens?
Zowel de aarde met haar abnormaal grote maan als de zon zijn, fysisch gezien, ongewoon maar niet uniek in het bekende heelal. Aardachtige exoplaneten blijken veel voor te komen, NASA schat alleen al in de Melkweg meer dan tien miljard. Er zijn nu al zelfs 24 “superbewoonbare” exoplaneten bekend die zelfs geschikter zijn voor leven dan de aarde. We weten dat het technisch gezien haalbaar is om bijvoorbeeld helium-3 te winnen uit gasreuzen als Jupiter of desnoods uit sterren. Echt vergevorderde beschavingen kunnen zelfs zwarte gaten of -mogelijk- donkere materie benutten om energie mee op te wekken.

Het voornaamste bijzondere element van de aarde is haar diverse ecosysteem en vooral de aanwezigheid van minimaal één intelligente, althans: handige soort. We zijn een weelderige oase, omringd door saaie, dode werelden. Als woongebied ligt de aarde niet echt voor de hand. Een ruimtecilinder bouwen is veel gemakkelijker dan om naar een verre ster te reizen. Om maar niet te spreken over de vele bacteriesoorten hier die voortdurend op zoek zijn naar voedingsbronnen. Wel interessant is om DNA van miljoenen soorten te verzamelen en de menselijke cultuur te snuiven.

En wie weet is er meer aan de hand. Mogelijk vormt de aarde een belangrijk knooppunt in een voor ons onzichtbaar transportnetwerk. Of is hier een belangrijke grondstof aanwezig die we nog niet kennen, of waarvan we tot nu toe nog geen nuttige toepassing hebben ontdekt.

Waarom de geheimhouding?
Het bestaan van leven buiten de aarde is een idee dat al honderden jaren bestaat.  Giordano Bruno, een tijdgenoot van Galilei, werd er nog voor op de brandstapel gegooid. Een invasie door buitenaardsen is de uitgekauwde plotline van honderden razendpopulaire science fiction boeken en series, variërend van War of the Worlds tot V en Independence Day. Waarschijnlijk zal het grootste deel van de mensheid een zucht van verlichting slaken als blijkt dat “minds infinitely superior to us” voorkomen dat het beste kabinet sinds de Tweede Wereldoorlog en hun al even verlichte collega’s in de rest van de wereld, hun onovertroffen talenten tot het creëren van rampspoed nog verder uitleven. De meeste mensen geloven al in een onpeilbaar wijze en almachtige alien, God genaamd. Kortom: als er geheimhouding moet zijn, heeft dat waarschijnlijk een andere reden. Want waar komen deze aliens vandaan? En:  waarom hebben ze met hun onvoorstelbaar overvloedige hulpbronnen de mensheid nodig om onderzoek te doen?

Mogelijkheid 1: de aliens waren hier al veel eerder en onze voorouders vereerden ze als goden. 
God kwam al eerder ter sprake als een almachtig buitenaards wezen. Voldoende geavanceerde technologie is niet van magie te onderscheiden. Zou een buitenaards wezen duizenden jaren geleden op aarde landen, dan zouden mensen hen vermoedelijk zien als goden. In feite is dit precies wat er gebeurde in enkele gevallen waarbij westerlingen met paarden en vuurwapens in aanraking kwamen met op wapengebied iets minder ver ontwikkelde beschavingen, zoals de Azteken en de Inca’s. Beschrijvingen  in zowel de Tenach (Ezechiël) als in de vedische literatuur uit India hebben veel weg van twintigste- en eenentwintigste technologie, bij Ezechiël. een vliegend tuig, in de veda’s een nucleaire oorlog en een raketafweersysteem. Zou dit inderdaad kloppen, en zouden de goden inderdaad kosmonauten zijn zoals kroegbaas Erich von Däniken beweerde, dan zouden letterlijk miljarden mensen van hun geloof afvallen. De maatschappelijke impact zou aanzienlijk zijn.

Mogelijkheid 2: we leven in een simulatie.
Volgens de simulatiehypothese is onze wereld een soort zeer realistisch computerspel, een soort Second Life. God is, vanaf atheïstisch oogpunt bekeken, dan de sysadmin van de simulatie die het heelal is en die op een onvoorstelbare krachtige supercomputer ergens draait. Wij zijn dan niets dan een computerprogramma.
De diverse geloven, zoals christendom en boeddhisme zijn in feite varianten van de simulatietheorie. Dit zou inderdaad een enorme schok zijn, vooral voor atheïsten en agnosten. Afhankelijk van met welk geloof de werkelijke simulatie overeen komt, zou ook dit een schokeffect hebben op gelovigen met een sterk hiervan afwijkend wereldbeeld.  De aliens zouden hier onze hulp niet nodig hebben. De programmeur van de simulatie is immers almachtig. De Marsbasis zou eveneens niet nodig zijn.

Mogelijkheid 3: de aliens komen van een parallel heelal. 
Volgens de veel-wereldeninterpretatie van de kwantummechanica en enkele kosmologische modellen bestaan er veel parallelle heelallen naast ons eigen heelal. Hier zijn de natuurwetten iets anders.  De schok hiervan zou beperkt zijn. De Kelten geloofden al in parallelle werelden. In de 1001 Nacht, gebaserd op oude Perzische legenden en filosofieën,  worden onderaardse werelden beschreven. Ook hemel en hel, en de diverse werelden van het Zuivere Land boeddhisme waarin je incarneert als je het erg goed, of juist erg slecht, doet, kunnen worden gezien als parallelle werelden. Parallelle heelallen zijn een minder schokkend alternatief dan de eerder genoemde mogelijkheden. Het is al vrij algemeen bekend onder het grote publiek dat ons heelal waarschijnlijk niet het enige heelal is. De voorwaarden voor leven zijn namelijk wel erg gunstig in dit heelal. Waarschijnlijk bestaan er veel heelallen waar bijvoorbeeld sterren direct ontploffen of er geen atomen bestaan. Dit is dus zeker een mogelijkheid.

Mogelijkheid 4: de “experimenten” van de aliens zijn verre van onschuldig en onethisch naar huidige menselijke maatstaven.
Aardbewoners die door aliens ontvoerd zeggen te zijn, verklaren dat ze onvrijwillig deel uitmaakten van fokexperimenten. Een buitenaards fokprogramma zou inderdaad ethisch erg schokkend zijn en de buitenaardsen niet erg populair maken onder de gemiddelde aardbewoner. Een fokprogramma is voor een soort die biologisch totaal afwijkt van de mens, vanzelfsprekend niet haalbaar. Zo zijn er geen gevallen bekend waarin Japanse octopus-porno resulteerde in de geboorte van een nieuw zeemonster. Waarmee we op de volgende optie komen.

Mogelijkheid 5: de aliens zijn afstammelingen van de mens uit de verre toekomst en hebben ons DNA nodig. 
Getuigenverslagen beschrijven doorgaans “greys”, mensachtige wezens met grote ogen en een groot hoofd op een spichtig lichaam. Vergeleken met onze aapachtige voorouders hebben wij een groter hoofd, grotere ogen en een zwakker lichaam. Toekomstige mensensoorten zouden veel op deze greys kunnen lijken, als deze ontwikkelingen zich doorzetten. Mogelijk ontstond er in de verre toekomst een calamiteit, bijvoorbeeld een ziekte, waardoor voortplanting niet meer mogelijk is of de mens op uitsterven staat. Indianenvolkeren met weinig genetische variatie die afstamden van het handjevol eerste kolonisten uit Siberië, stierven als vliegen aan voor ons alledaagse ziekten als griep of verkoudheid. Menselijke plantenkwekers zijn voortdurend op zoek naar materiaal van gewassen als tarwe, tomaten en olijven uit zogenoemde Vavilov-centra. Dit zijn plekken, waar de meeste genetische variatie is te vinden. De aarde van nu is het Vavilov-centrum van de mens.  Toekomstige kolonisten zullen net als de voorouders van de indianen, uit vrij kleine groepen bestaan. Mogelijk zijn ze zo genetisch homogeen, dat hun voortbestaan wordt bedreigd. Genen oogsten op aarde ligt dan voor de hand. Medewerking van een grote aardse mogendheid, zoals de supermacht Usa, is dan nuttig om incidenten in de doofpot te stoppen.
Dit scenario veronderstelt tijdreizen. Omdat tijdreizen allerlei logische paradoxen oplevert, zouden deze wezens dan uit een parallelle tijdlijn afkomstig moeten zijn. Ook veronderstelt dit scenario een relatief gebrekkige kennis van de menselijke biologie. Hoewel er subscenario’s denkbaar zijn waarbij deze kennis verloren is geraakt, bijvoorbeeld omdat de mens een machineachtige soort is geworden en vervolgens door een ramp al deze biologische kennis is vernietigd – zo weten wij ook niet meer hoe Grieks vuur of (tot voor kort) Romeins zeewaterbestendig beton werden gemaakt – , zijn deze niet heel waarschijnlijk. Deze aliens zouden dan over moeten gaan op low-tech methodes als seks en implantatie in draagmoeders. Sterk punt van dit scenario is wel dat het buitenaardse ontvoeringen logisch verklaart.

Mogelijkheid 6. De aliens zijn gestrand in het zonnestelsel en hebben aardse hulp nodig om te ontsnappen. 
De afstanden tussen sterren zijn enorm. De afstand tot het Alfa Centauristelsel, de dichtstbijzijnde zonachtige ster, is 4,2 lichtjaar, oftewel rond de 250.000 maal verder dan de afstand tussen de aarde en de zon. Zonder een warpachtige aandrijving zijn deze afstanden niet te overbruggen.

Stel, een astronaut zou stranden in de Romeinse tijd, of in het Chinese Tang-keizerrijk omstreeks het jaar nul, of bij de Maya’s, en niet ziek worden of gedood. Zelfs als hij of zij een complete bibliotheek met alle aardse technische kennis van nu tot zijn beschikking had, en redelijk Latijn of klassiek, Chinees of Kiche zou spreken, dan zou hij weinig hebben aan het primitieve smeedijzeren Romeinse, Chinese, laat staan stenen Maya-gereedschap om zijn ruimteschip te repareren. Om van de aarde te ontsnappen, zou hij minimaal een laat twintigste-eeuwse beschaving uit de grond moeten stampen om alle onderdelen van zijn ruimteschip te kunnen produceren. Dit zou zeker twee tot drie generaties kosten, als je veel risico neemt, zo ongeveer alle priesters tot vijand maakt en alle medewerking hebt van de machthebbers.

In dit geval is niet zozeer sprake van een schokeffect, maar van (gerechtvaardigde) angst van de aliens dat ze tot slaaf gemaakt en uitgebuit zullen kunnen worden. Dit scenario zou verklaren waarom aliens menselijke hulp nodig hebben.

Een variant is dat deze aliens de laatste overlevenden van een interstellaire oorlog zijn en onderdak zoeken op een barbaarse planeet. Ongeveer zoals rebellen die zich in een tropisch regenwoud verstoppen.

Of…
Deze lijst is verre van uitputtend. Wat denken jullie, als lezers?

Bron
1. The UFOs have asked not to publish that they are here, humanity is not ready yet (vertaald), Yedioth Aharonot, 2020
2. The UFOs Didn’t Come In Peace! Astronaut Sets Record Straight On ET Nuclear War, Huffington Post, 2019
3. Prof. Haim Eshed: “Aliens asked not to publish that they are here (vertaald), radio2000, 2020
4. David Israel, Former Head of Israel’s Space Program: The Aliens Asked Not To Be Revealed, Humanity Not Yet Ready, JweishPress.com, 2020

Werk van Caltech-onderzoekster Frances Arnold bewees dat het mogelijk is om bacteriën silicium te laten gebruiken. En hiermee mede op silicium gebaseerd leven denkbaar is. Bron: Caltech

Is niet-organisch leven mogelijk?

Koolstofverbindingen worden in de chemie organische verbindingen genoemd. Dit is niet voor niets. Koolstof is onmisbaar voor leven. De koolstofchemie is onvoorstelbaar rijk. Er bestaan meer verbindingen met koolstof dan alle bekende verbindingen zonder koolstof. Maar wat als er om welke reden dan ook, op een bepaalde plek geen koolstof is maar wel andere elementen en energie? Of als er zelfs geen chemie zoals we die kennen mogelijk is? Zou zich op die plek leven kunnen vormen? Het antwoord: misschien, al is de kans hierop voorzover we weten niet erg groot. Hieronder een overzicht met de, voornamelijk speculatieve, kennis die we op dit moment hebben opgedaan.

In een doorbraak in 2017 ontdekten onderzoekers iets opmerkelijks. Ze slaagden er in om met behulp van gerichte evolutie een enzym van de bacterie, Rhodothermus marinus, tot een effectieve katalysator om te vormen voor de vorming van verbindingen tussen koolstof en silicium. Een bacterie die in staat is om silicium te verwerken, bewijst dat het in theorie mogelijk is dat er gedeeltelijk op silicium gebaseerde levensvormen bestaan.Zie ook deze video.

Werk van Caltech-onderzoekster Frances Arnold bewees dat het mogelijk is om bacteriën silicium te laten gebruiken. En hiermee mede op silicium gebaseerd leven denkbaar is. Bron: Caltech
Werk van Caltech-onderzoekster Frances Arnold bewees dat het mogelijk is om bacteriën silicium te laten gebruiken. En dat hiermee mede op silicium gebaseerd leven denkbaar is. Bron: Caltech

Op dit moment is er op aarde geen ecologisch voordeel voor dergelijke levensvormen, maar op werelden die veel heter zijn dan de aarde, bijvoorbeeld Venus, zijn op silicium gebaseerde levensvormen mogelijk in het voordeel. Siliconen en andere siliciumverbindingen zijn soms beter tegen hoge temperaturen bestand dan koolstofverbindingen. En silicium is nog maar het begin van de mogelijkheden…

Bron
Frances H. Arnold et al., Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life, Science Magazine, 2016 (DOI: 10.1126/science.aah6219 )