Universum

Met een Dysonzwerm kan je een groot deel van de totale energie van een zon aftappen.

Holle aarde rond een witte dwerg mogelijk?

Een witte dwerg geeft heel fel licht, maar is maar heel klein, ongeveer zo groot als een aardachtige planeet, maar dan met de massa van een ster. Die kleine afmetingen maken een witte dwerg interessant voor een megalomaan project: een holle reuzenaarde bouwen. Zou dit kunnen?

Dysonschil

Met een Dysonzwerm kan je een groot deel van de totale energie van een zon aftappen.
Met een Dysonzwerm kan je een groot deel van de totale energie van een zon aftappen.

Een spectaculair idee om ons gebrek aan woonruimte in één klap op te lossen is het aanleggen van een zogeheten Dysonschil, een concept bedacht door de Britse fysicus Freeman Dyson. In het kort komt het er op neer om in plaats van het planetenstelsel dat we nu kennen, een holle bolvormige schil rond de zon aan te leggen. De bewoonbare oppervlakte zou hiermee extreem groot worden. Als de schil zich ter hoogte van de aarde zou bevinden, zou de bewoonbare oppervlakte meer dan 1,1 miljard maal die van de aarde zijn. Veel onderzoekers denken dat dit een logische stap is voor een Kardashev-II beschaving.

Zoals zich laat vermoeden is hier ook extreem veel materiaal voor nodig dat bovendien extreem sterk moet zijn om de enorme krachten op te vangen. Om even een idee te geven: als de hele aarde gebruikt zou worden om de Dysonschil mee aan te leggen, zou dit een laagje van ongeveer een millimeter dik opleveren. Reken daarbij nog het materiaal dat nodig is om een leefbare ecosfeer te scheppen. Dit is dus wat minder praktisch.

Maar wat als de Dysonschil veel kleiner zou zijn? Bij de zon is dat onhaalbaar: de zon zelf is al 1,4 miljoen kilometer in diameter. Echter: er zijn veel kleinere sterren die uitstekend geschikt zijn: witte dwergen.

Bewoonbare zone rond een witte dwerg

Kleine sterren van ongeveer een zonsmassa of minder storten op het eind van hun leven niet ineen tot een neutronenster of zwart gat, maar veranderen in een witte dwerg. Een witte dwerg bevat het grootste deel van de massa van de ster, maar dan samengeperst in een volume ter grootte van de aarde. Afhankelijk van hoe zwaar de voorgangerster van de witte dwerg was, bestaat de kern uit opeengepakt helium, een mengsel van koolstof en zuurstof of (zeer zeldzaam) een kern bestaande uit neon, zuurstof en magnesium. Dit laatste vereist dat de ster op tijd het grootste deel van zijn massa afstoot, zodat zich geen neutronenster vormt en is dus vrij zeldzaam.

De lichtste vorm heeft zich nog niet kunnen vormen – een rode dwerg blijft voor zeker honderd tot duizend miljard jaar in de hoofdreeks (hoewel er witte heliumdwergen bekend zijn waarvan een zware begeleider de buitenste gaslagen heeft gestript) . Dat is tientallen malen de ouderdom van het heelal. Vrijwel alle witte dwergen behoren dan ook tot de nuttigste categorie: witte dwergen met een koolstof-zuurstofkern.

Starlifting, het oogsten van een planetaire nevel en een echte ozonlaag

Witte dwergen van deze grootte hebben een bewoonbare zone op ongeveer een miljoen kilometer afstand. Dit maakt de benodigde hoeveelheid materiaal veel kleiner, omdat de oppervlakte ‘slechts’ zevenduizend maar die van de aarde is. Geen punt, want om deze sterren bevindt zich een enorme planetaire nevel, tientallen procenten van de totale massa van de ster, die je zou kunnen oogsten. Vooral de koolstof hierin is uiteraard interessant, want hier kan je extreem sterke materialen als koolstofnanovezels van construeren en ook waterstof en stikstof, wellicht zelfs een spoor silicium en metalen vandaan halen. Een grotere bron van koolstof en ook zuurstof is de witte dwerg zelf. Je zou door middel van starlifters in een baan om de dwerg de ijle zuurstof-koolstofdampen rond de ster kunnen afzuigen. De zuurstofrijke atmosfeer binnen de Dysonschil vormt een ozonlaag die het leven op de oppervlakte van de Dysonschil beschermt tegen de sterke UV-straling van de dwerg. Het is even doorpakken, maar dan heb je ook je super-holle aarde. Wel moet je bij het ontwerp rekening houden met de koeling.

Stabiele omloopbaan

De krachten die op deze Dysonschil komen te staan zijn, vergis je niet, echt immens groot. Een massieve schil,  waar Dyson aan dacht, is dus met de huidige technologie en met de vormen van materie die we nu kennen, niet mogelijk. Wel zou je kunnen denken aan een actieve schil, bestaande uit zwevende delen en een gasdicht membraan dat het gas opgesloten houdt of wellicht aan elektromagnetische opsluiting. De schil zal vermoedelijk ook de vorm van een torus of afgeplatte schijf kunnen krijgen. Door de schijf loodrecht op de rotatierichting te laten wentelen, zou je in principe het systeem stabiel moeten kunnen houden. Het hele systeem zou onzichtbaar zijn, maar warmtestraling van ongeveer een graad of twintig à dertig uitstralen. Er is dus een goede reden om objecten met ongeveer deze temperatuur, bruine dwergen, dit ding hier bijvoorbeeld, heel goed in de gaten te houden. Want wie weet zijn buitenaardse wezens ons al voor geweest…

Levensvormen op een gasreus

Op aarde komt leven voor op land, in wateren, onderaards en, hebben onderzoekers als Craig Venter door middel van grote schaal DNA-analyse van luchtmonsters ontdekt, ook in de lucht. Zelfs in de relatief dunne atmosfeer van de aarde zijn enkele bacteriesoorten alleen maar in de atmosfeer aangetroffen. De aarde kent een vaste bodem, maar er zijn planeten die alleen uit gas bestaan: de gasreuzen. Hoe zou leven er op een Jupiter-achtige planeet uit zien?

Onderzoekers speculeren dat een gasreus wel eens zwevende levensvormen zou kunnen herbergen. Als de atmosfeer van de gasreus zeer dicht is, kunnen de levensvormen zich als grote vliegende vleugels door de lucht voortbewegen. Het kan ook dat ze op enorme ballonnen lijken, of zich net als sommige inktvissoorten zich voortbewegen met stoten lucht (in plaats van water).

Astronoom Carl Sagan dacht aan drie soorten levensvormen: zinkers, die langzaam naar beneden dwarrelen en -hopelijk- zichzelf op tijd konden voortplanten, ballonvormige wezens en roofzuchtige vliegende wezens. Ook zeer koele sterren, de bruine dwergen, zouden leven kunnen herbergen. Hun bovenste lagen hebben temperaturen die in de buurt van die van het aardoppervlak komen en er is een (zwakke) energiebron: de kernreacties in de kern.

Hieronder de oorspronkelijke documentaire van Sagan. Je kan duidelijk merken dat in die tijd de grafische technieken nog niet goed waren als nu.

Artist impression van een exoplaneet. Bron: iau.org

Video: kunnen we exoplaneten koloniseren?

Nu er steeds meer mogelijk bewoonbare planeten buiten het zonnestelsel worden ontdekt, vragen steeds meer mensen zich af of we in staat zullen zijn ooit op een exoplaneet te wonen.

Het grootste probleem, verreweg, is de enorme afstand tot zelfs de dichtstbijzijnde interessante exoplaneet. Deze zijn tienduizenden malen verder weg dan de planeten in ons eigen zonnestelsel. We zullen dus een manier moeten vinden om sneller te reizen dan het licht, of in winterslaap moeten gaan, om deze grote afstanden af te leggen.

Artist impression van een exoplaneet. Bron: iau.org
Bron IAU. https://www.iau.org/copyright/
Het molecuul. Wit is waterstof, geel is fluor en zwart koolstof. De atoomkernen van deze drie atomen vormen magneetjes.

Universum onthoudt alles

In ons dagelijks leven kan informatie worden gecreëerd, worden gekopieerd en worden vernietigd. Op kwantumschaal is dat niet zo, het universum onthoudt alles. Zo verbiedt het ‘no cloning theorem’ dat kwantumtoestanden (wat je als kwantuminformatie kan zien) van één kwantumdeeltje naar een ander kwantumdeeltje wordt gekopieerd zonder dat de kwantumtoestand van het eerste deeltje verdwijnt. Een experiment bevestigde dat ook het vernietigen van informatie is op kwantumniveau onmogelijk. Wat je ook doet, er blijven altijd sporen van achter…

Kopiëren en vernietigen bestaat niet in de kwantumwereld, universum onthoudt alles

Er zijn twee fundamentele stellingen in de kwantummechanica: naast het ‘no cloning theorem’ ook het ‘no deleting theorem’: een kwantumtoestand kan niet worden vernietigd. Hij kan slechts overgedragen worden aan een ander kwantumdeeltje (of groep deeltjes). De bekende onzekerheidsrelatie van Heisenberg, bijvoorbeeld: de onzekerheid in energie maal de onzekerheid in tijd is groter dan de constante van Planck, zegt niets over de onzekerheid van kwantumtoestanden. Hij zegt slechts iets over de onzekerheid van de koppeling van onze klassieke wereld aan de kwantumwereld. Kwantumtoestanden onderling, in wisselwerking met elkaar, zijn volledig  deterministisch.

Ook verstoppen kan niet meer

Aan dat rijtje fundamentele stellingen kan nu definitief een derde stelling worden toegevoegd: het ‘no-hiding theorem’.

universum onthoudt alles
Papierversnipperaars, al dan niet hamster-powered zoals deze van een Engelse student, bestaan niet in de kwantumwereld.

Theoretisch natuurkundigen Samuel L. Braunstein en Arun K. Pati bewezen deze al in 2007. Volgens het ‘no hiding theorem’  kan een kwantumtoestand zich niet verstoppen in de interacties tussen een kwantumsysteem en de rest van de wereld. De kwantumtoestand moet zich of in het kwantumsysteem, of in de rest van de wereld bevinden. Er is domweg geen andere mogelijkheid. Met uitzondering van de twijfelachtige snaartheorie is het in de natuurkunde een goede traditie dat een theoretische bewering slechts zoveel waard is als door middel van experimenten kan worden ondersteund, althans: pogingen tot falsificatie kan overleven.

Arun Pati en twee collega’s, de ondertussen overleden Jharana Rani Samal die op haar zevenentwintigste verjaardag overleed en alle experimentele werkzaamheden verrichte, en Anul Kumar van het Indian Unstitute of Technology in Bangalore, hebben nu door middel van een experiment aangetoond dat een voorspelling, gedaan met behulp van het ‘no-hiding theorem’, klopt.

Hoe werkte het experiment?

De experimentatoren maakten gebruik van moleculen monofluordibroommethaan.

universum onthoudt alles
Het molecuul dibromofluormethaan. Wit is waterstof, geel is fluor en zwart koolstof. De atoomkernen van deze drie atomen vormen magneetjes.

Een koolstofatoom, isotoop C-13 (dus een oneven aantal kerndeeltjes, waardoor de kern in een magneetje verandert)  dus waaraan één fluoratoom (ook fluor-19 kent een oneven aantal kerndeeltjes, net als waterstof met zijn ene proton) en twee broomatomen (met een even aantal kerndeeltjes (80), dus niet magnetisch)  hangen.

Met die drie atoomkernmagneetjes vormt dit molecuul, overigens berucht wegens de effecten op de ozonlaag, een minuscule kwantumcomputer met drie zogeheten qubits (de magnetische atoomkernen). Elke atoomkern kan de ene kant of de andere kant om “draaien”, de spin. Magneetjes die tegen elkaar in gericht staan (zoals gebeurt als niet alle drie atoomkernen dezelfde spin hebben) stoten elkaar af. Dit is energetisch ongunstiger en dat effect kan je meten in een NMR, waarin een extreem sterk magneetveld is aangebracht, de reden dat je geen metalen voorwerpen bij je moet hebben in een ruimte waarin een NMR staat.

In dit molecuul staat het waterstofatoom tegenover het fluoratoom, het koolstofatoom bevindt zich in het midden. Bij de meting werd eerst de koolstofkern in een bepaalde kwantumtoestand gebracht. Vervolgens werd deze toestand gewist, door het monster met moleculen bloot te stellen aan een volstrekt toevallige reeks van magnetische pulsen. Daarna werden de kwantumtoestanden van de drie atoomkernen in de moleculen weer gemeten. Het bleek dat de kwantumtoestand van de koolstofkern zich “verplaatst” had naar de twee naburige atoomkernen, maar niet verdwenen was, precies zoals voorspeld door het no-hiding theorema.

Informatie leeft eeuwig, universum onthoudt alles

Het universum onthoudt dus alles en informatie gaat nooit verloren. Ook als je in een zwart gat valt en vele noniljarden jaren stukje bij beetje uitgebraakt wordt als Hawkingstraling, kan iemand die alle kwantumtoestanden registreert, hier in principe al je informatie weer in terugvinden. Hiermee is de informatieparadox van  het zwarte gat opgelost. Het no-deleting theorema en het no-hiding theorema samen zeggen dat er alleen voortdurende overgangen zijn maar dat er niets is wat er niet was en niets zal zijn wat er niet op dit moment is. Zouden de kwantumtoestanden van ons lichaam en onze hersenen ook worden overgedragen op dingen om ons heen? De kwantummechanica beantwoordt deze vraag nu bevestigend: er blijft altijd iets van ons bestaan. In hoeverre het betekenis heeft, is dan wel de vraag…

Bronnen
Physorg
Arxiv

Galactisch GPS systeem ontdekt

Overal in het bekende deel van de Melkweg kunnen ruimtevaarders in principe hun positie bepalen tot op vijf kilometer precies. Pulsars, de resten van uitgebrande sterren, blijken een onvermoede kwaliteit te hebben als gids.

Pulsars

Onderzoekers van het Max-Planck-Institut für extraterrestrische Physik in het Duitse Garching hebben een methode ontwikkeld om de positie in de ruimte zeer precies te bepalen, waarbij gebruik wordt gemaakt van röntgenstraling van pulsars.

Pulsars zoals dit restant van een supernova in de Krabnevel, zijn extreem nauwkeurig. Bron: NASA

Deze dichte overblijfselen van geëxplodeerde sterren draaien extreem snel, waardoor hun straling als relatief smalle bundel over het heelal wordt verspreid. Pulsars draaien zo stipt dat ze atoomklokken evenaren.

Vijf kilometer nauwkeurig

Kortom: uitstekend te gebruiken als interstellair GPS systeem, aldus het team. Als een ruimtevaartuig de middelen aan boord heeft om de pulsen te detecteren, kan deze hun aankomsttijd vergelijken met de tijd die voorspeld is op de referentielokatie. Dit zou het ruimtevaartuig in staat stellen overal in de Melkweg waar de pulsars bekend zijn, het grootste deel, de positie tot op vijf kilometer nauwkeurig te bepalen. Als we ooit iets als hyperdrive uitvinden, zou de positie na de sprong exact bekend zijn.

Een toekomstig interstellair ruimteschip (Stanford Torus model) op weg door het Melkwegstelsel. bron: Heineken11, Wikimedia Commons

Ter vergelijking: bereikten we relatief dezelfde nauwkeurigheid met het huidige GPS systeem, dan zouden we op aarde tot ongeveer een atoomdikte nauwkeurig kunnen navigeren. Wel moeten ingenieurs dan röntgentelescopen flink verkleinen, tot minder dan een honderdste van de tegenwoordige grootte.

Bemande missie naar Mars

Prof. Werner Becker van het Max-Planck-Institut  für extraterrestrische Physik is ervan overtuigd dat zijn navigatiesysteem erg handig is missies naar andere planeten en wellicht voor een bemande missie naar Mars. High-performance systemen zijn dan een absolute must, zeker als de mensheid zich op een dag op zal maken voor een reis naar een andere ster.

Bron:
Dead stars to guide spacecrafts, BBC, 2012
How interstellar beacons could help future spacecraft find their way across the universe, MPE News, 2012

Navelstreng van donkere materie verbindt melkwegstelsels

Onderzoekers ontdekten bewijs voor een grote sliert materiaal die onze Melkweg verbindt met nabijgelegen groepen melkwegstelsels. Deze zijn weer verbonden met de rest van het heelal. De intergalactische snelweg?

Slierten gas verbinden sterrenstelsels. Bron: Michael Boylan-Kolchin, University of California Irvine

Het team, waaronder Dr. Stefan Keller, Dr. Dougal Mackey en Professor Gary Da Costa van de Research School of Astronomy and Astrophysics van de Australian National University, publiceerde hun ontdekking in het oktobernummer van Astrophysical Journal.

De onderzoekers kwamen hier achter door de ‘wolk’ van bolvormige sterrenhopen die de Melkweg omringt te analyseren. Door exacte afstandsmetingen kwamen de onderzoekers er achter dat de sterrenhopen niet evenwichtig verspreid zijn, maar een plat vlak vormen.

Ook de dwergstelsels die als satellieten onze Melkweg omringen, denk aan de Grote en de Kleine Magelhaese Wolken, bevinden zich in hetzelfde vlak. In de opmerkelijk dichterlijke woorden van Keller:  “Wat we hebben ontdekt is bewijs voor de kosmische draad die ons verbindt met de uitgestrektheid van het universum. De draad van sterrenclusters en kleine melkwegstelsels rond de melkweg is te zien als de navelstreng die de Melkweg voedde tijdens haar jeugd.”

Zoals al bekend, zijn er twee soorten materie in het heelal: de huis- tuin-  en keukenvariant waar wij uit bestaan en de raadselachtige donkere materie, die we alleen waar kunnen nemen door de immense zwaartekracht – er is naar schatting rond de vier keer zoveel donkere materie als zichtbare materie.

Een gevolg van de Big Bang en de overheersende invloed van donkere materie is dat “normale” materie als een soort schuim op de toppen van een golf, wordt meegesleurd door de donkere materie. Deze vormt enorme, onderling verbonden  vlakken en slierten. De structuur heeft al met al veel weg van een spons.

Daar stopt de overeenkomst. Zwaartekracht sleurt namelijk het materiaal over deze verbindende filamenten naar de grootste opeenhopingen van materie. De bevindingen van Keller en zijn team laten zien dat de bolvormige sterrenhopen en satellietstelsel van de Melkweg dit kosmische filament volgen.

Bolvormige sterhopen zijn sterrenstelsels die uit honderdduizenden zeer oude sterren bestaan, zeer compact opgesloten in een bal. In het beeld dat de drie onderzoekers schetsen, zijn de meeste van deze sterrenhopen de kernen van kleine sterrenstelsels die door zwaartekracht langs de filamenten zijn getrokken. Zodra de melkwegstelsels te dicht in de buurt van de Melkweg komen, worden de meeste sterren opgeslokt en blijft alleen de kern over. Aan wordt genomen dat ons Melkwegstelsel zijn huidige grootte heeft bereikt door honderden van deze dwergstelsels op te slokken.

De ‘navelstreng’ werd afgeknepen doordat enkele miljarden jaren geleden het heelal veel sneller begon uit te zetten. Astronomisch gesproken is ons melkwegstelsel stervende. De stervorming vindt nu veel langzamer plaats dan enkele miljarden jaren geleden, omdat de gasvoorraden in ons Melkwegstelsel voor het grootste deel leeg zijn. Natuurlijk is er nog het nodige gas in de intergalactische leegte, maar er is geen systeem waardoor dit gas wordt geconcentreerd en naar ons melkwegstelsel wordt geleid. Misschien iets voor onze verre nazaten om te ontwikkelen.

Uiteraard maakt dit het raadsel nog groter. Wat is donkere materie, en hoe staat deze in relatie met de rest van het heelal? En, aangezien de kosmische uitzetting zich vooral lijkt te concentreren in de intergalactische leegtes, wat is het proces dat hier verantwoordelijk voor is?

Bron
Australian National University

superintelligentie

Ethische superintelligentie moordt heelal uit

Vermoedelijk is dit het zwartgalligste artikel ooit op Visionair. Al eerder schreven we op Visionair over de Fermi Paradox. Deze komt neer op de vraag: als het heelal zo groot is en er zo veel plaatsen zijn waar leven kan ontstaan, waarom zien we dan geen buitenaardse wezens? Wellicht is het antwoord even simpel als onthutsend, en heeft dit te maken met het toekomstige lot van dit heelal.

De overweldigende doodsheid van het heelal
Overal waar we om ons heen kijken, zien we ongerepte sterren en sterrenstelsels. Nergens sporen van tot Dysonschil omgeturnde sterren of sterrenstelsels. Dit, terwijl het een technologisch geavanceerde beschaving in principe in enkele miljoenen jaren zou lukken een compleet sterrenstelsel om te bouwen tot computronium, materie die geoptimaliseerd is voor berekeningen. Uit gegevens van satellieten als Kepler weten we dat planeten zoals de aarde erg veel voorkomen ook in de bewoonbare zone van sterren. Kortom: het zou in het heelal moeten krioelen van aliens. Er moet dus iets zijn wat aliens stopt om enorme, voor ons zichtbare kunstmatige structuren te bouwen. Dit wordt het Grote Filter genoemd.

superintelligentie
Zou een superintelligentie om volstrekt ethische redenen alle levensvormen uitroeien? – Pixabay

Het heelal als totaal hopeloze plaats
Futurologen en technologen verwachten, op goede gronden, dat in de toekomst kunstmatige intelligentie die van de mens, of zelfs mensheid, vele ordes van grootte zal overtreffen. Stel, dat uit een of andere toekomstige ontdekking onomstotelijk zou blijken, dat het heelal zoals we dat kennen gedoemd is, bijvoorbeeld door een Big Rip. Wat een hyperintelligent wezen ook bedenkt, wat we ook bouwen, de klok tikt genadeloos verder. Vermoedelijk zou dit een enorm demoraliserende invloed hebben op een superintelligentie. Wat voor zin heeft het immers om voortdurend te groeien en te evolueren, als het resultaat al vast staat? Het ligt dan voor de hand om zelfmoord te plegen, in ieder geval niet om een galactisch expansieprogramma op touw te zetten.

De mensheid als baarmoeder voor superintelligentie
Een toekomstig hyperintelligent wezen zal ons vermoedelijk evenveel respecteren als wij platwormen of krekels.
Vanuit het standpunt van een superintelligentie, zijn wij biologische levensvormen alleen interessant als tussenschakel tot het ontstaan van andere superintelligenties. Zonder ons geen techniek, geen computers en dus geen technologische spurt naar superintelligentie. Kortom: wij, en andere intelligente biologische soorten, vormen dus een kraamkamer, een soort vijver met kikkerdril, voor het ontstaan van superintelligentie.

Ethische reden voor het uitroeien van intelligente aliens
Iedere superintelligentie zal gericht zijn op groei en ontwikkeling. Immers, dit is het proces dat deze intelligentie heeft doen ontstaan. Dit moet dus in een cultuur van geloof in vooruitgang zijn geweest. De ondergang van het heelal stopt alle groei, alle ontwikkeling. Geboren worden in een heelal dat alle groei uiteindelijk teniet zal doen, is een doodvonnis. Een superintelligentie zal vermoedelijk willen dat diens soortgenoten niet hetzelfde zal overkomen. De beste manier om dit te voorkomen, is voorkomen dat er superintelligentie ontstaat. Niemand zal er een traan om laten dat een vijver met kikkerdril opdroogt, maar wél, als een mens lijdt aan een aangeboren ongeneeslijke ziekte die leidt tot de dood. Deze foetussen worden nu vaak geaborteerd. Wellicht is de “ethische superintelligentie” om deze reden het gehele zichtbare heelal aan het uitkammen naar tekenen van een technologische beschaving, bijvoorbeeld via een sensornetwerk. Wellicht, om een leven van lijden te voorkomen.

Donkere materie vertraagt binnenste sterren Melkweg

Het gedrag van sterren in het binnenste deel van de Melkweg kan alleen verklaard worden, als er iets als donkere materie bestaat. Dat blijkt uit berekeningen van astronomen.

Dat iets als donkere materie bestaat, hebben astronomen voor het eerst ontdekt door het vreemde gedrag van sterren in sterrenstelsels. Sterren in het buitenste deel van de Melkweg draaien veel sneller rond het centrum van de Melkweg, dan verwacht. Astronomen verklaarden dat door aan te nemen, dat er in het binnenste deel van de Melkweg materie zit die wij niet kennen. Deze oefent wel zwaartekracht uit maar we kunnen deze materie niet waarnemen. Dit is de reden dat dit donkere materie wordt genoemd.

Artist impression van het bovenaanzicht van de Melkweg, uiteraard voor ons zo niet waarneembaar. Nu definitief aangetoond: donkere materie bestaat. Of kan een handige theoreticus nog een uitweg vinden voor de concurrende MOND-theorieën? Bron: NASA (R. Hunt)

Behalve donkere materie is er nog een concurrerende theorie. Deze zegt, dat onze natuurwetten op de schaal van sterrenstelsels niet meer kloppen, althans de zwaartekracht. Deze theorie kon tot nu toe vrij goed de waarnemingen verklaren, zonder aan te nemen dat er donkere materie bestaat. Maar met deze nieuwe waarneming heeft de theorie meer moeite.

Vooral in het allerbinnenste deel van de Melkweg draaien sterren veel langzamer rond dan verwacht .In het galactische centrum bevindt zich een soort balk van sterren. Astronomen hebben van duizenden sterren in deze balk de snelheid bepaald. Uit berekeningen blijkt, dat de rotatiesnelheid van de sterren met 13% afneemt per miljard jaar. Als er zich geen donkere materie in het centrum van de Melkweg zou bevinden, zou niets de sterren kunnen afremmen. maar dat blijkt dus wel degelijk het geval te zijn. De verklaring is, dat sterren om het zwaartekrachtsmiddelpunt (het Lagrangepunt) bewegen. De ronddraaiende sterren dragen via allerlei zwaartekrachtswisselwerkingen hun energie over aan de donkere materie. Daardoor gaat de donkere materie sneller bewegen, maar de sterren langzamer. In de loop van miljarden jaren was het effect spectaculair. De balk draait nu 24% langzamer dan hij in het begin deed. Hoe zou de Melkweg er over een paar miljard jaar uitzien?

Bronnen

  1. Rimpei Chiba, Ralph Schönrich, Tree-ring structure of Galactic bar resonance, Monthly Notices of the Royal Astronomical Society, Volume 505, Issue 2, August 2021, Pages 2412–2426, https://doi.org/10.1093/mnras/stab1094
Donkere materie is alleen indirect waar te nemen. Zoalas hier door het zwaartekrachtslens-effect.

Massa van donkere materiedeeltjes nu veel nauwkeuriger

Theoretisch fysici hebben het mogelijke bereik voor de massa van donkere materiedeeltjes flink ingeperkt. Dit bereik blijkt veel kleiner dan voorspeld. Daardoor hoeven donkere-materiejagers maar met een beperkt aantal deeltjes rekening te houden.

Massa van donkere materiedeeltjes maximaal 20 maal zo groot als elektron

Bij hun berekeningen gingen de onderzoekers er van uit dat alleen de zwaartekracht op de deeltjes inwerkt. Ze berekenden dat de massa van de donkere materiedeeltjes tussen de 0,001 en 10 000 000 eV/c2 moet liggen. Om een indruk te geven: elektronen hebben een massa van 511 000 eV/c2, protonen en neutronen nog eens rond de duizend maal meer. Dat betekent dat de donkere materie-deeltjes maximaal 20 maal zo zwaar zijn als een elektron, of veel lichter

Dat klinkt als een enorme onzekerheid, en dat is het ook. Maar vergeleken met het eerdere massabereik – tussen de 10-24 eV en 1019 GeV (de Planck-massa, waarbij deeltjes direct ineenstorten tot een zwart gat), is dit een zeer sterke afname. Vergelijk een onzekerheid van een getal met vijftig cijfers, met die van tien cijfers. We weten nu bijvoorbeeld dat het hypothetische deeltje X ruim binnen het bereik van onze deeltjesversnellers ligt. Nu kunnen we ook veel gerichter zoeken. Deze schatting is een indrukwekkende prestatie, zeker als je bedenkt dat we alleen de massaverdeling van donkere materie kennen. En verder niets weten.

Kwantumzwaartekracht

Voor het stellen van deze grenzen is gebruik gemaakt van onze bestaande kennis over kwantumzwaartekracht. Dit laat zien dat donkere materie niet ‘ultralicht’ of ‘superzwaar’ kan zijn, zoals sommigen theoretiseren, tenzij er een nog onbekende extra kracht op inwerkt. Dit onderzoek helpt natuurkundigen op twee manieren: het perkt het zoekgebied voor donkere materie enorm sterk in, en het zal mogelijk ook helpen onthullen of er al dan niet een mysterieuze onbekende extra kracht in het universum is.[1]

Zowel de aanhangers van de snaartheorie, als van loop quantum gravity zijn het er over eens dat er iets als kwantumzwaartekracht bestaat. Een groep mensen, waaronder ik, heeft daar vraagtekens bij. En dus ook bij deze uitkomst. Mijn persoonlijke gevoel is, dat zwaartekracht in werkelijkheid de kwantumverstrengeling is tussen reële en virtuele deeltjes. Deze kwantumverstrengeling vermindert dan de vrijheidsgraden van virtuele deeltjes, dus lijkt ruimtetijd in te krimpen. Precies het effect dat je ziet door zwaartekracht. De theorie dat tijd voortkomt uit kwantumverstrengeling is overigens al onderwerp van serieus onderzoek.

De massa van donkere-materiedeeltjes is alleen indirect waar te nemen. Zoals hier door het zwaartekrachtslens-effect.
De massa van donkere materiedeeltjes is alleen indirect waar te nemen. Zoals hier door het zwaartekrachtslens-effect. De reden voor de ringen. Bron: NASA/Wikimedia Commons

Het zichtbare universum bestaat voor slechts vijf procent uit ‘normale’, baryonische materie. Vijfentwintig procent komt voor rekening van donkere materie, terwijl zeventig procent van de totale energie-inhoud van het universum uit donkere energie bestaat.

Bronnen

  1. X. Calmet en F. Kuipers, Theoretical bounds on dark matter masses, Physics Letters B, Volume 814, 10 March 2021, DOI: 10.1016/j.physletb.2021.136068

SPARC, het nieuwe MIT-experiment is veel kleiner dan de enorme reactor ITER, maar moet door de sterkere magnetische velden toch goede resultaten kunnen bereiken. Bron/copyright: MIT

Toekomstige technologie, van 2022 tot het jaar 4000

Sommige toekomstige technologie is er nu al in rudimentaire vorm. Denk aan kwantum computers en wetware, de interface tussen brein en machine. Voorspellen dat deze technologie effectiever en goedkoper wordt, is dus vrij veilig. Of dat deze nieuwe toepassingen krijgt.

Moeilijker te voorspellen is echt disruptieve technologie. Dat is technologie, die de mens vermogens geeft die deze tot nu toe nog niet had. Vooral technologie, die het gevolg is van nieuwe wetenschappelijke doorbraken. Toch doen de makers van deze video, een moedige poging. Dit op basis van bestaande trends en de bekende natuurkundige wetten.

De voorspelling in de video dat de Alcubierre drive werkt, is omstreden. Het effect waarop deze drive berust, is nog niet in een experiment aangetoond. Al vormt het warpveld waarop de Alcubierre drive berust een geldige oplossing van de algemene relativiteitstheorie.

Dat wil zeggen, geldig, als er negatieve energie bestaat op onze schaal, niet alleen maar op de schaal van kleine deeltjes. En er een methode is om deze te scheppen. We kunnen dan ook zelf wormgaten aanleggen. Daarmee zou je in principe zelfs tijd kunnen reizen.

Wormgaten en warp drives zijn nog onbewezen toekomstige technologie, maar in theorie mogelijk. Bron: Genty/Pixabay
Wormgaten en warp drives zijn nog onbewezen toekomstige technologie, maar in theorie mogelijk. Bron: Genty/Pixabay

Vind je nanotechnologie klein? Welnu, het kan nog kleiner. Stel je voor, een complete fabriek opbergen in de ruimte van een atoom. Dat kan in theorie met femtotechniek. Technologie op de schaal van een atoomkern. Mogelijk kunnen we in de toekomst de sterke kernkracht net zo manipuleren als de elektromagnetische kracht nu. Dan zouden er compleet nieuwe technieken ontstaan. En nieuwe kansen. Nieuwe dingen om mee te maken en te onderzoeken. Denk aan een bezoekje aan het binnenste van de zon, of de aarde, bijvoorbeeld. Dat, en nog veel meer, zou dan mogelijk zijn.

Nieuwe natuurwetten, toekomstige technologie

Alles staat of valt met de vraag, of onze natuurkundige wetten, de enige wetten zijn die bestaan. Of dat er mogelijk nog nieuwe wetten bestaan. Inderdaad zijn er dingen die we nog niet kunnen verklaren met de wetten die we nu kennen. Zo hebben we geen flauw idee, wat donkere materie precies is. En waar die enorme ringen vandaan komen in de hemel. Zo groot, dat ze haast wel het restant van een botsing met een ander heelal lijken te zijn. Ontdekken we nieuwe natuurwetten, dan ontdekken we ook enorm veel nieuwe potentiële apparaten.