Wetenschap

Ruimtetijd rond massa, zoals de zon, krimpt in, wat zich in dit plaatje uit als grotere rastervakken.

Ruimtetijd en vrijheidsgraden

Volgens Einsteins algemene relativiteitstheorie laat massa ruimtetijd als het ware inkrimpen.  In de buurt van massa verloopt de tijd langzamer en zijn afstanden kleiner dan ver verwijderd van massa. Op de een of andere manier perkt massa dus de bewegingsvrijheid om zich heen. Waarom? Mogelijk geeft de wiskunde antwoord.

Wat is ruimte?
Ruimte is een ander woord voor aanwezige vrijheidsgraden, denk aan de betekenis van het woord in begrippen die helemaal niets met ruimte zols wij die kennen te maken hebben, zoals  ‘onderhandelingsruimte’ of ‘oplossingsruimte’. De wiskunde maakt geen onderscheid tussen fysieke en virtuele ruimtes. Als je wilt weten wat de oppervlakte is van een tweedimensionale figuur op een vel papier, of als je wil weten wat de integraal is van, zeg, de groeisnelheid van een gewas op het veld, dingen die op het eerste gezicht helemaal niets met elkaar te maken hebben, gebruik je dezelfde wiskundige techniek: integraalrekening. Het enige wat hier ter zake doet is de wiskundige structuur die op elkaar lijkt. Zo is er wiskundig gezien ook geen verschil tussen de (bij benadering, als we relativistische effecten even buiten beschouwing laten) Euclidische ruimte (x-, y- en z-as) waarin we leven en een natuurkundig systeem waarbij er drie totaal los van elkaar staande meetgrootheden zijn, bijvoorbeeld temperatuur, draaisnelheid en draairichting.

Waarom is de ruimte rond massa kleiner?
Einstein beschreef met zijn algemene relativiteitstheorie de effecten van massa. Hij ging hierbij uit van het equivalentieprincipe: massa is zowel traag als zwaar. De algemene relativiteitstheorie beschrijft slechts het effect van massa en wat dat betreft van impuls op ruimtetijd door middel van tensoren (wiskundige objecten die de vervorming van ruimtetijd beschrijven). De theorie geeft geen mechanica (mechanisme) waardoor de effecten van massa op de omringende ruimte ontstaan.
Wel weten we nu uit de wiskundige analogieën van Euclidische ruimte dat het iets te maken moet hebben met het inperken van mogelijkheden. Klaarblijkelijk zorgt massa er op een of andere geheimzinnige manier voor dat de bewegingsruimte van alles er om heen kleiner wordt. De magische verdwijntruc van massa dus. Het ophelderen van dit mechanisme betekent de aard en de bron van zwaartekracht blootleggen.

Ruimtetijd rond massa, zoals de zon, krimpt in, wat zich in dit plaatje uit als grotere rastervakken.
Ruimtetijd rond massa, zoals de zon, krimpt in, wat zich in dit plaatje uit als grotere rastervakken.

Gravitonverklaring schiet hopeloos tekort
Gravitonen zijn hypothetische deeltjes, die massa onderling zou uitwisselen. Omdat gravitonen alleen maar aantrekken en niet afstoten, betekent de uitwisseling van gravitonen dat massa naar andere massa wordt toegetrokken. Op magische wijze zorgen gravitonen er ook voor dat de tijd trager gaat en afstanden kleiner worden. Gravitonen worden eveneens geacht ruimte en tijd te verklaren. Echter: als je aanneemt dat gravitonen bestaan, moet dat juist het aantal mogelijkheden flink doen toenemen. Al die gravitonische interacties maken namelijk de wereld veel ingewikkelder dan deze zonder gravitonen is.

Een toenemende ingewikkeldheid zie je meteen in je wiskunde terug. Zo is de warmtecapaciteit van water veel groter dan die van bijvoorbeeld waterstof of zuurstof, omdat een watermolecuul op heel veel verschillende manieren kan bewegen. Elk waterstofatoom kan vibreren ten opzichte van het zuurstofatoom, het kan om zijn as tollen, in drie richtingen vliegen en, last but not least, bestaan er ook waterstofbruggen tussen het zuurstofatoom en twee naburige waterstofatomen van buurmoleculen. Het gevolg: water kan veel meer warmte opslaan dan waterstof omdat er veel meer trillingsmogelijkheden zijn. De thermische ruimte binnen het molecuul en dus de thermische traagheid van water is daardoor veel groter dan die in het eenvoudige waterstofmolecuul, dat alleen kan rondtollen, vibreren en bewegen in x, y en z-richting.

Je zou dit hetzelfde effect verwachten als gevolg van gravitonen. Meer ingewikkeldheid betekent meer bewegingsruimte en dus niet een verkleining, maar juist een vergroting van ruimtetijd. Kortom: gravitonen kunnen als verklaring voor zwaartekracht worden afgevoerd.

De eerste stap slaat het Rb-atoom aan. De tweede stap perst het foton er in. De derde stap is het opgeslagen, terwijl het door middel van een zwakke laserpuls in de vierde stap wordt uitgelezen.

Kwantumgeheugen van één atoom

Voor het eerst zijn wetenschappers er in geslaagd om in een individueel atoom informatie op te slaan. Wordt deze techniek op grote schaal toepasbaar, dan kunnen bijvoorbeeld alle woorden die alle mensen die ooit hebben geleefd, ooit hebben uitgesproken, worden opgeslagen in minder dan een gram materie, bijvoorbeeld een suikerklontje.

Atoomgeheugen voor quantum bits
Vergeet de steeds grotere rekenkracht of hoeveelheid geheugen. De grootste vooruitgang in de computertechniek is geboekt in het steeds sneller en compacter opslaan van data. De wat oudere lezers herinneren zich misschien nog de ponskaartmachines. IBM is daar groot mee geworden.

De eerste stap slaat het Rb-atoom aan. De tweede stap perst het foton er in. De derde stap is het opgeslagen, terwijl het door middel van een zwakke laserpuls in de vierde stap wordt uitgelezen.
De eerste stap slaat het Rb-atoom aan. De tweede stap perst het foton er in. De derde stap is het opgeslagen, terwijl het door middel van een zwakke laserpuls in de vierde stap wordt uitgelezen.

Een bit op een ponskaart bestaat uit de aan- of afwezigheid van een gaatje dus de informatiedichtheid was niet bijster hoog. Met de komst van magneettape, harde schijven en de moderne solid-state geheugens is de informatiedichtheid werkelijk geëxplodeerd. Op de beste magnetische harde schijven vandaag de dag zijn de magnetische gebiedjes honderd bij honderd nanometer, dat is rond de duizend atomen lang en breed, groot.

Met een nieuwe techniek zijn nu echt geheugens op atoomschaal gerealiseerd. Sterker nog: het atoom slaat de weerbarstige qubits, kwantumbits op wat nog veel grotere mogelijkheden voor berekeningen geeft. Niet alleen zullen kwantumcomputers veel sneller zijn dan bestaande computers, ze worden dus, zo lijkt het, ook nog eens veel kleiner.

Hoe werkt het systeem?
Het systeem dat ontwikkeld is door Holger Specht en zijn collega’s aan het Max Planck Instituut voor Quantum Optiek in het Duitse Garching propt de kwantuminformatie van een gepolariseerd lichtdeelte (foton) in een rubidiumatoom en weet het later uit te lezen.
Hierbij wordt het lichtdeeltje met het rubidiumatoom opgesloten in een holte waar het lichtdeeltje heen en weer kaatst. In ongeveer negen procent van de gevallen is dat lang genoeg om het rubidiumatoom de energie (en kwantuminformatie) te laten opslaan. Het atoom slaagde er in de quantumbit voor 180 microseconden op te slaan. Extreem kort, maar voor een computer een eeuwigheid: op de pc waar ik op werk is deze tijd bijvoorbeeld voldoende om honderdduizenden bewerkingen uit te voeren.

Het atoom moet eerst met een zwakke laserstraal in de juiste aangeslagen toestand worden gebracht, waarna het het foton op kan slokken. Met een tweede laserpuls wordt het atoom er toe gebracht het foton met de kwantuminformatie weer af te staan. Specht denkt dat hij de opslagtijd zelfs kan vergroten tot enkele seconden. Toepassingen zijn onder meer een quantum repeater, een soort versterker om kwantuminformatie over langere afstanden te kunen transporteren. Er zijn meerdere onderzoeksgroepen in de race om het ultieme kwantumgeheugen te ontwikkelen, maar toch is dit een zeer veelbelovend resultaat.

Bronnen
ArXiv Blog
ArXiv

Beschut in een diepe krater kunnen zich op Mars ijsafzettingen vormen.

IJs op Mars gevonden op tropische breedtegraden

De overlevingskansen voor een kolonie op onze buurplaneet Mars zijn met een nieuwe ontdekking aanzienlijk gestegen. Naar blijkt, bevindt zich in de gastvrijer tropische breedtegraden op Mars een grote hoeveelheid waterijs op enkele meters onder de oppervlakte. Dat is goed nieuws, want een winter op Mars in de buurt van de polen, waar het zo koud wordt dat zelfs kooldioxide verandert in sneeuw, is niet bepaald iets dat je graag mee wilt maken…

Zonder water geen leven
Ooit, miljarden jaren geleden, kende Mars grote oceanen.

Miljarden jaren geleden had Mars een enorme oceaan op het noordelijk halfrond.
Miljarden jaren geleden had Mars een enorme oceaan op het noordelijk halfrond.

Het hele noordelijk halfrond, nu bekend als Borealis Bassin, vormde een grote ondiepe oceaan. Ook nu nog zijn sporen van grote hoeveelheden waterijs rond de martiaanse noordpool aangetroffen. Water is essentieel voor leven. Er is geen enkele levensvorm bekend die het zonder water erg lang uithoudt, al zijn schijndoodtoestanden bekend die zeer lang kunnen duren. Kortom: plekken waar vloeibaar water aanwezig is, staan bovenaan het verlanglijstje voor buitenaards leven.

Tropen op Mars nu bewoonbaar
De mens is uiteraard geen uitzondering. De overlevingskansen voor een buitenaardse kolonie staan of vallen met de aanwezigheid van water in vloeibare of vaste vorm. Omdat het tot nu toe allerminst zeker was dat er water aanwezig was in de tropische gebieden op Mars gingen plannenmakers uit van de gevaarlijke, gure gematigde en poolstreken op Mars, waar het niet alleen erg koud is maar ook de weersomstandigheden snel en voortdurend intensief veranderen. De vermoedelijke ontdekking van grote ijsvoorraden in de tropen komt dus als geroepen.

Indirecte bewijzen
De aanwezigheid van ijs is afgeleid uit de aanwezigheid van kooldioxide-afzettingen op berghellingen in de tropen die gericht zijn op de dichtstbijzijnde pool. Kooldioxide slaat alleen neer als het op een bepaalde plaats extreem koud is, denk aan rond de zeventig graden onder nul bij aardse luchtdruk. Pas als de temperatuur hartje winter op Antarctica nog zeventig graden zou dalen tot -145 graden, zou  het overigens op Antarctica koolzuur gaan sneeuwen, dit door de lage CO2-dampdruk in de atmosfeer.

Waterijslaag houdt koolzuursneeuw ijskoud
De aanwezigheid van koolzuursneeuw op hellingen in de schaduw betekent dus dat de temperaturen hier ruim onder de honderd graden onder nul liggen.

Beschut in een diepe krater kunnen zich op Mars ijsafzettingen vormen.
Beschut in een diepe krater kunnen zich op Mars ijsafzettingen vormen.

Dat kan alleen door de aanwezigheid van een grote koudebuffer: de martiaanse atmosfeer voert in de zomer warmte aan van warmere gebieden,  die gebieden zonder de koudebuffer van waterijs snel zou opwarmen en dus de koolzuursneeuw zou laten smelten. In de tropen van Mars loopt de temperatuur hartje zomer namelijk op tot een paar graden boven het nulpunt.

Er zijn twee mogelijke verklaringen voor de koudebuffer: massieve rots en waterijs. Als het om massieve rots op enkele meters diepte zou gaan, zou de verdeling van CO2-afzettingen anders zijn dan nu het geval is. Ook zijn er geen sporen van de uniforme aanwezigheid van deze rotslaag gevonden. Er zijn grote rotsgebieden op Mars, maar deze vormen geen aaneengesloten geheel.  De conclusie van de onderzoekers is daarom dat een ijslaag verantwoordelijk is voor de eeuwige koolzuursneeuw in de tropen.

Leven op Mars?
Dit maakt de vooruitzichten om leven op Mars aan te treffen ook beter. Bekend is dat er in de Martiaanse zomer meer methaan vrijkomt dan in de winter. Methaan kan uit vulkanisme afkomstig zijn, maar is vaak een bijproduct van bacteriële activiteit. Als er in de tropen grote hoeveelheden ijs in de Martiaanse bodem zitten, kan dit mogelijk smelten in de zomer en hiermee bacteriën uit hun winterslaap wekken.

Bronnen:
Arxiv Blog
ArXiv

Een vuurstenen bijl uit de Nieuwe Steentijd. Vuursteen was een gewilde substantie voor de vroege mens.

‘Hand geëvolueerd door gereedschapgebruik’

Volgens onderzoek van de universiteit van Kent zijn onze handen geëvolueerd in de veelzijdige grijpinstrumenten die het nu zijn doordat de mens gereedschap is gaan gebruiken.

Nieuw onderzoek van antropologen van de universiteit van Kent heeft een oud vermoeden van Darwin bevestigd: onze handen zijn geëvolueerd tot de huidige veelzijdige vorm als gevolg van het gebruiken van gereedschap. Onderzoek van de anatomie van de hand wees al uit dat de anatomie van onze hand aanmerkelijk verschilt van die van mensapen zoals orang-oetans, gorilla’s en chimpansees.

Een vuurstenen bijl uit de Nieuwe Steentijd. Vuursteen was een gewilde substantie voor de vroege mens.
Een vuurstenen bijl uit de Nieuwe Steentijd. Vuursteen was een gewilde substantie voor de vroege mens.

Cultuur veroorzaakte biologische evoutie in de mens
Uit het onderzoek van Dr Stephen Lycett and Alastair Key, beide van de universiteit van Kent, blijkt dat er duidelijke verschillen zijn in de effectiviteit van de oudste steenbewerking van 2,6 miljoen jaar geleden en die van modernere mensen. Uit een serie van experimenten blijkt dat mensen met kleine handen zoals die van de mensachtige Lucy van 2,6 miljoen jaar geleden veel minder effectieve stenen gereedschappen kon produceren dan onze moderne handen – of de handen van mensachtigen die de tussenschakels tussen deze verre voorouders en ons vormden.

Dit heeft rechtstreeks te maken met de anatomie van de hand, ontdekten de onderzoekers. In hun experimenten maten ze de kracht in de hand en de grootte van de handen van  zestig proefpersonen en lieten hen vervolgens een stuk kabel van een centimeter doorsnede in tweeën snijden – dertig gebruikten een stalen mesje zonder handvat, de overige dertig een vuurstenen splinter. De onderzoekers vonden een significant statistisch verband tussen handgrootte en greepsterkte  enerzijds en snelheid waarmee de deelnemers konden snijden anderzijds.

Dit is het eerste aangetroffen verband tussen de ontwikkeling van techniek en de evolutie van de mens, waarbij de techniek de evolutie van de mens stuurde. Mogelijk verklaart dit ook waarom de eerste mensen zich weinig verspreidden. Vuursteen komt slechts op enkele plaatsen voor. Dit bevestigt bestaande bilogische ideeën over de rol die techniek speelde in de vorming van de mens.

Huidige culturele druk op de menselijk genetisch materiaal
Analyse van het menselijk DNA-materiaal heeft uitgewezen dat het menselijk DNA de laatste tienduizend jaar sterk veranderd is. Dit is, vermoeden onderzoekers, het gevolg van de introductie van landbouw en het houden van vee, waardoor de mens melk is gaan drinken. Om die reden komt lactose-intolerantie nauwelijks meer voor in Europa en andere gebieden waar mensen veel melk drinken. Onze maatschappij ziet er nu heel anders uit dan bijvoorbeeld honderd jaar geleden. Het is duidelijk dat genetische eigenschappen die honderd jaar geleden heel nuttig waren, bijvoorbeeld resistentie tegen hongersnood en lintwormen, nu juist niet zo nuttig zijn. Wat voor type mens zou evolueren uit de nieuwe generatie mensen? Of zullen we in de toekomst designerbabies kweken?

Bronnen
ScienceDaily

Journal of Archaeological Science

Enceladus zoals gefotografeerd van Voyager is maar klein, maar herbergt nog veel geheimen.

‘Enceladus onverklaarbaar heet’

Het kleine ijsmaantje Enceladus is veel actiever op de zuidpool dan volgens berekeningen kan. Wat is er aan de hand op deze verre satelliet van Saturnus?

Enceladus: niet voor zonliefhebbers
Enceladus is een extreem koude ijsbal van ongeveer vijfhonderd kilometer in doorsnede. Maximumtemperatuur in hartje zomer: tweehonderd graden onder nul.  De zwaartekracht is bijna microscopisch laag. Omdat het maantje voor een groot deel uit ijs bestaat – en vermoedelijk veel water onder de dikke ijskap bevat – achten onderzoekers Enceladus een interessante kandidaat voor buitenaards leven. Het zuidpoolgebied bevat een aantal raadselachtige lijnen, waar geisers vloeibaar water de ruimte in sproeien.

Enceladus zoals gefotografeerd van Voyager is maar klein, maar herbergt nog veel geheimen.
Enceladus, hier gefotografeerd door Voyager, is maar klein, maar herbergt nog veel geheimen.

Metingen van de infraroodmeter van satelliet Cassini laten zien dat er in het zuidpoolgebied veel meer warmte vrij komt dan voorspeld uit berekeningen: 15,8 miljard watt, twintig maal zoveel als alle hete bronnen in Yellowstone National Park (in feite de krater van een slapende reuzenvulkaan) produceren of tweederde van het vermogen van alle elektriciteitscentrales in Nederland samen. Saturnus (en dus ook Enceladus) staat zeer ver van de zon: de zon heeft op Saturnus maar één procent van de kracht hier op aarde. Op grond van deze metingen zijn ook de grootste sceptici nu overtuigd dat er echt een oceaan van vloeibaar water bestaat in Enceladus.

Geheimzinnige hittebron
Kortom: iets moet deze extreem grote warmteproductie veroorzaken. Getijde-effecten  zijn uitgesloten, deze leveren hooguit anderhalf miljard watt. Radioactief verval (op aarde de drijvende kracht van vulkanen en aardwarmte) maximaal 0,3 miljard watt. Onderzoekers geloven niet in een nulpuntsenergiecentrale van aliens, maar denken nu dat Enceladus een ingewikkelde driehoeksrelatie heeft met buurmaan Dione en Saturnus. Door ingewikkelde zwaartekrachtsinteracties tussen deze drie hemellichamen, waardoor Enceladus geregeld wordt gekneed, zou de huidige sterke activiteit verklaard worden en afgewisseld worden door langere perioden inactiviteit. Dat we Enceladus net in een actieve fase aantreffen zou dan toeval zijn.

Metingen van Cassini aan de waterpluimen die Enceladus uitstoot wezen uit dat ze veel opgeloste zouten en organische stoffen bevatten. Sommige exobiologen willen daarom dat een satelliet monsters neemt van zo’n pluim om uit te zoeken of Enceladus buitenaards leven bevat. Diep graven, zoals op Jupiters ijsmaan Europa moet, is dan niet nodig.

Bron: Physorg

Honderd ordes van grootte: de energie van quantum tot quasar.

De energie van (bijna) alles

Energie speelt een allesoverheersende rol in ons leven, wat heet, in het hele universum. Energie komt voor in hoeveelheden die zo klein zijn dat we ze alleen met extreem gevoelige apparatuur kunnen waarnemen, tot energieuitbarstingen die een compleet heelal uit het niets kunnen toveren.

Hieronder een plaatje met de energie van alles, variërend van een stilstaand foton tot het universum (klik voor de volledige vergroting).

Honderd ordes van grootte: de energie van quantum tot quasar.
Honderd ordes van grootte: de energie van quantum tot quasar. Klik voor volledige grootte.
Zee-ijs huisvest een dichte algenmat. Zou dit ook niet voor het ijs van Jupitermaan Europa kunnen gelden? Bron: Antarctic Sun

IJsalgen manipuleren ijs

In zee-ijs bevinden zich kleine kanaaltjes zout water waarin algen en andere eencelligen leven. Naar blijkt, hebben de algen deze zelf geconstrueerd. Onder het ijs houdt zich een ingewikkeld ecosysteem op. Zouden zich op ijswerelden als Jupitermaan Europa ook dergelijke netwerken kunnen ontwikkelen?

IJsbergen huisvesten algenkolonies
Al langer was bekend dat zee-ijs kleine hoeveelheden zout water bevat. Tot voor kort werd gedacht dat de microscopische kanalen met zout water van nature in het ijs voorkomen. Dat blijkt niet het geval: de algen vormen deze kanalen door het uitscheiden van suikers die het vriespunt verlagen. Als gevolg daarvan kunnen de ijsalgen het gehalte aan kooldioxide, voedingszouten en andere essentiële stoffen in het ijs met vele tientallen procenten laten stijgen.

Zee-ijs huisvest een dichte algenmat. Zou dit ook niet voor het ijs van Jupitermaan Europa kunnen gelden? Bron: Antarctic Sun
Zee-ijs huisvest een dichte algenmat. Zou dit ook niet voor het ijs van Jupitermaan Europa kunnen gelden? Bron: Antarctic Sun

Vooral in het voorjaar, als het ijs smelt, zijn deze algen de eerste organismen die van de toegenomen hoeveelheid zonlicht gebruik kunnen maken om zich te vermenigvuldigen en zo veel zuurstof voor de zee onder het ijs te produceren, ongeveer zestig procent van de totale productie in die tijd. Aan het einde van de lange poolwinter is zuurstof zeer schaars onder water, zodat deze verse stroom zuurstof effectief het groeiseizoen start. Onder drijfijs hangen vaak lange slierten algen zoals Melosira arctica. Soortgelijke slierten koloniseren de kanaaltjes in ijs. Pas later in de lente, als het ijsoppervlak breekt en er grote stukken open water ontstaan kunnen vrijlevende algen en dergelijke de fakkel overnemen.

Als het klimaat opwarmt betekent dit waarschijnlijk dat de algen in staat zijn zich aan te passen aan andere groeiomstandigheden, zelfs het waarschijnlijk beter zullen doen en meer voedsel voor de rest van het ecosysteem produceren dan nu. Voor veel arctische ecologen is dit een opluchting.

IJswerelden
Hiermee is ook aangetoond dat ijs een minder ongastvrije omgeving is dan het lijkt. IJsrijke planeten en manen kunnen dus in principe leven herbergen, gesteld dat het leven eenmaal zich ontwikkeld heeft en in staat is om van een andere bron te leven. De lichtintensiteit (zonneconstante) op de baan van Jupiter is een dertigste van die van de aarde. Dit is de lichtintensiteit enkele tientallen meters onder water op aarde. In principe zouden algen het dus uit moeten kunnen houden in het ijs van Europa, al zullen ze dan wel hoge doses radioactieve straling moeten kunnen verdragen. Zouden algen de rode verkleuringen in de buurt van de linae op het oppervlak van Europa veroorzaken?

Bronnen
Science Daily

massa uit licht

Massa uit licht maken, hoe massaloos licht massa krijgt

Massa uit licht maken is makkelijker dan het lijkt. Het is dus wellicht niet een zo groot raadsel als veel natuurkundigen denken, war massa vandaan komt. Met behulp van de reactiewetten van Newton en de relativiteitstheorie (speciaal en algemeen) kom je een heel eind.

Het is nog steeds een onopgelost raadsel dat deeltjesfysici over de hele wereld tot wanhoop brengt: waar komt massa vandaan? Einstein boekte weliswaar een fundamentele doorbraak met zijn beroemde formule energie is massa maal de lichtsnelheid in het kwadraat, maar toch is nog steeds niet verklaard waar massa vandaan komt. Fotonen, bijvoorbeeld, bezitten wel energie maar geen massa. Het graviton, wat het ook is, is nog steeds compleet spoorloos. Maar misschien is er een oplossing…

Eigenschappen van massa

Massa heeft twee eigenschappen, die voor zover we weten in principe los van elkaar staan: het is traag en het is zwaar. De traagheid van  massa uit zich in de moeite die je moet doen om een brok massa in beweging te krijgen. Een rotsblok van twee kilo is twee keer zo moeilijk in beweging te krijgen (bijvoorbeeld met een snelheid van een meter per seconde omhoog te gooien) als een rotsblok van één kilo.

Als je niet op tijd maakt dat je weg komt, kom je op onzachte wijze in aanraking met een tweede eigenschap van massa: het is zwaar. Hoe meer massa, hoe sterker de zwaartekracht op het blok werkt (en hoe sterkere zwaartekracht het blok uitoefent). Op dit principe bewust de weegschaal. Een weegschaal meet niet je massa maar je gewicht: de kracht die massa uitoefent. Als je massa verdubbelt, verdubbelt je gewicht ook. Eigenlijk is dit merkwaardig. Op het eerste gezicht lijken traagheid en zwaartekracht niets met elkaar te maken te hebben. Ook Einstein waagde zich niet aan de oplossing van dit raadsel: de algemene relativiteitstheorie beschrijft slechts wat massa doet met de ruimte er omheen (en zo zwaartekracht opwekt), niet waarom massa traag is en waarom massa überhaupt de ruimte om zich heen vervormt.

Massa uit licht maken

Einstein voorspelde dat je massa kunt maken uit energie.

massa uit licht
Een van binnen volmaakt spiegelende bol kan massa uit licht maken. Bron: NARA, public domain

Kort geleden is die voorspelling ook waargemaakt, met een extreem krachtige laser waarmee elektron- positronparen zijn gemaakt. Een kilowattuur (3,6 MJ) energie staat bijvoorbeeld gelijk aan veertig miljardste gram. Een bekende techniek in deeltjesversnellers is deeltjes versnellen tot vlak bij de lichtsnelheid waardoor ze veel meer (relativistische) massa krijgen. Op die manier is er veel energie beschikbaar om bij de botsing allerlei (hopen de onderzoekers) nog onontdekte deeltjes te produceren.
Door dit te doen weten we echter nog steeds niet wat massa eigenlijk is: immers ook elektronen en positronen hebben een elementaire massa. Wat we eigenlijk willen bereiken is een systeem zonder massa, op een kunstmatige manier massa geven, m.a.w. zowel traag maken als zwaar.

Een bol gevuld met licht krijgt massa

Het meest voorkomende massaloze deeltje dat we kennen is het foton, het lichtdeeltje. Stel je laat een wolk fotonen met samen een hoeveelheid energie van duizend miljard  (1015) kilowattuur in een massaloze, volmaakt spiegelende bol heen en weer kaatsen. Wat voor proefje je ook verzint, bij elke meting lijkt het alsof de inhoud van de volmaakt spiegelende bol een massa heeft van ongeveer veertig gram.

Licht wordt traag

Wil je de bol bijvoorbeeld van je af verplaatsen, dan krijgen de fotonen die op het moment dat je tegen de bol duwt tegen de wand in je richting botsen, een extra impuls en worden daardoor energierijker. Je neemt dat waar als traagheid. Als je de bol weer afremt tot stilstand, staan de fotonen hun extra energie weer af. Het is iets lastiger om rotatie-inertie in te bouwen, maar als de spiegelende bol binnen een oneffen oppervlakte heeft is ook dit mogelijk. Door de bol te laten draaien worden fotonen zo gedwongen in een bepaalde richting (bijvoorbeeld met de klok mee of tegen de klok in) te bewegen. Dit voelt ook als traagheid. Deze energie is ook weer uit de bol te halen door hem tot stilstand te brengen. Trage massa uit licht, dus.

Licht wordt zwaar

De bol lijkt ook zwaar te zijn: tegen je hand te duwen als hij in je hand ligt. De reden is dat licht een roodverschuiving krijgt als het in een zwaartekrachtsveld naar buiten beweegt. De tijd gaat heel iets langzamer naar de aarde toe dan van de aarde af, waardoor fotonen die aan de onderkant van de bol zijn, energierijker lijken dan aan de bovenkant. Door deze (overigens minuscule) blauwverschuiving ontstaat een kracht naar beneden. De bol lijkt (en is dus, natuurkundig gezien) zwaar. Dus we hebben hier niet alleen trage, maar ook zware massa uit licht gemaakt.

Het ontbrekende stukje aan de zwaartekrachtspuzzel

Er ontbreekt nog één stukje aan de puzzel. Hoe oefent de bol zwaartekrachtswerking uit op andere objecten, met andere woorden: hoe vervormt een biljoen kilowattuur aan weerkaatsende lichtenergie binnen een bol ruimtetijd om zich heen, zoals veertig gram materie dat ook doet? Wat denken jullie? Een ding is duidelijk. Hiervoor moeten we echt diep de speculatieve wetenschap induiken…

Eén van de door Hoover aangetroffen bacterieachtige structuren in de meteoriet.

‘Buitenaards leven ontdekt in meteoriet’

NASA-astrobioloog Richard Hoover stelt volgens het Journal of Cosmology dat hij fossielen van blauw-groene algen heeft aangetroffen in enkele koolstofmeteorieten die ouder zijn dan het zonnestelsel.
Worden zijn bevindingen bevestigd door onafhankelijk onderzoek, dan zijn de implicaties wereldschokkend te noemen. De aardse biosfeer is niet alleen: het hele universum bruist van het leven.

Fossiele bacteriën
Hoover deed zijn onderzoek aan CI1, een klasse van koolstofrijke meteorieten. Deze zijn extreem zeldzaam. Op aarde zijn in totaal slechts negen gevonden op een totaal van 35.000 meteorieten. Geen wonder: dit type meteoriet is extreem fragiel en valt in water snel uiteen. Hij bestudeerde fragmenten die uit deze meteorieten waren geprepareerd met twee typen scanning-elektronenmicroscopen: field emission (FESEM) en environmental (ESEM).
Met uiterst opmerkelijke uitkomsten. Hoover trof in de meteoriet structuren aan die als twee druppels water leken op de filamenten van aardse cyanobacteriën, ook bekend als blauw-groene algen. Cyanobacteriën behoren tot de alleroudste levensvormen en bestonden op aarde al meer dan drie miljard jaar geleden. Niet alleen de filamenten kwamen verbluffend veel overeen met hun aardse equivalenten, ook de microstructuren binnen de filamenten komen overeen met structuren die cyanobacteriën gebruiken voor dingen als voortplanting (baeocyten, akineten en hormogonia), stikstofbinding (basale, intercalaire of apicale heterocysten), hechting en voortbeweging (fimbriae).

Eén van de door Hoover aangetroffen bacterieachtige structuren in de meteoriet.
Eén van de door Hoover aangetroffen bacterieachtige structuren in de meteoriet.

Al langer is bekend dat deze klasse meteorieten uiterst rijk is aan complexe organische verbindingen, waarvan meerdere een afbraakproduct zijn van bekende biologisch actieve moleculen als chlorofyl. Ook zijn al in 1834 door de Franse chemicus Berzelius sporen van klei en andere in water gevormde mineralen aangetroffen in een van deze meteorieten, die van Orgueil. Ook uiterst opmerkelijk is dat de verdeling van aminozuren, de bouwstenen van eiwitten, in CI1 meteorieten heel anders is dan in koolwaterstofrijke koolstofmeteorieten zoals die in het Australische Murchison. Kortom: hun oorsprong is heel anders.

‘Aarde ingezaaid door kometen’
Uit de chemische analyse leidt Hoover af dat de CI1 meteorieten afkomstig zijn uit kometen. Hun verhouding tussen waterstof en deuterium (zwaar waterstof) is namelijk exact die van de zon. Ook de combinatie van water en koolstof is bekend van kometen. Recent is bevestigd dat het water in de oceanen van de aarde van kometen afkomstig is. Zo onlogisch is het dus niet om te veronderstellen dat als kometen inderdaad bacterieel leven bevatten – en het vergt heel wat fantasie om Hoovers resultaten te weerleggen – de aarde ingezaaid is door kometen. Panspermie door kometen is reeds voorspeld door de verguisde astrofysici Fred Hoyle en Chandra Wickramasinghe.  Hiermee is een ander al lang bestaand raadsel opgelost: het opmerkelijk snelle ontstaan van het leven op aarde terwijl we weten dat zelfs voor een eenvoudige bacterie heel wat complexiteit nodig is, al blijft de vraag onbeantwoord hoe het leven zich in kometen heeft kunnen ontwikkelen. Mogelijk moeten we dan aan kosmische stofwolken denken, waaruit zich uiteindelijk kometen hebben  gevormd.

Alternatieve verklaringen
Besmetting door aardse bacteriën is volgens Hoover uitgesloten, omdat hij bij het onderzoek bestaande barsten in de meteorieten heeft vermeden en uiterste zorg is betracht om hygiënisch te werken. Ook is het stikstofgehalte in zijn monsters extreem laag, vergelijkbaar met dat in gefossiliseerde resten van honderden miljoenen jaren oud. Het is uitgesloten dat in de zeer korte tijd dat de meteorieten op aarde zijn, aardse bacteriën gefossiliseerd raakten: zelfs fossiele resten van tienduizenden jaren oud bevatten nog veel stikstof. Als dergelijke gedetailleerde resten in een aardse rots waren aangetroffen, waren ze geïnterpreteerd als bacteriële fossielen.

Natuurlijk kunnen de meteorieten ook van iets anders afkomstig zijn dan een komeet. De meest voor de hand liggende verklaring is uiteraard de aarde zelf, gezien de gelijkenis met aardse bacteriesoorten. In het verleden is de aarde meerdere keren getroffen door zware asteroïden, die zeker in staat geacht kunnen worden grote hoeveelheden aards biologisch materiaal te lanceren. Mogelijk is een brok aarde na een lange reis weer teruggekeerd in de dampkring. Hier zijn de isotoopafwijkingen echter te groot voor. De waterstof/deuterium verhouding komt meer in de buurt van die van kometen.

Wetenschappelijke controverse gegarandeerd
Zowel het Journal of Cosmology als Hoover zelf wisten wat hen te wachten zou staan als ze deze uiterst controversiële uitkomsten naar buiten zouden brengen. Hoover zelf heeft gewacht met het naar buiten brengen van zijn onderzoeksresultaten tot hij na vele jaren gedegen werk het wetenschappelijke equivalent van een slam dunk had met een werkelijk overweldigende lawine aan feiten. De redacteuren van het Journal of Cosmology hebben om dezelfde reden het onderzoek voorgelegd aan honderd wetenschappers en vijfduizend andere wetenschappers om een reactie gevraagd.

Bronnen
Journal of Cosmology

Silicium-gebaseerde levensvormen maken vooral kans op hete, vrijwel koolstofloze werelden.

Levensvorm gebaseerd op silicium

Silicium is het zwaardere en minder actieve broertje van koolstof. Chemisch gedraagt silicium zich behoorlijk anders dan koolstof: kooldioxide is een gas, siliciumdioxide komt overal op aarde voor als wit zand. Plastics die bestaan uit koolstof en waterstof zijn erg brandbaar, siliconen, vergelijkbare verbindingen waarbij koolstof is vervangen door silicium, zijn juist zeer resistent tegen hoge temperaturen.

Toch hebben sommige onderzoekers het aangedurfd om te speculeren over levensvormen gebaseerd op silicium. Als koolstof uiterst schaars is en de temperaturen hoog, is leven gebaseerd op silicium duidelijk in het voordeel. Vandaar dat de onderzoekers de kans op silicium levensvormen hoger inschatten in de kern van de melkweg. Eén ding is duidelijk, als silicium-gebaseerd leven zou bestaan. Je moet veel, heel veel geduld hebben om een levensteken te ontwaren aan deze levende rotsen…