Oneindigheid is een handig concept, wiskundig gezien. Natuurkundigen zitten daarentegen met hun handen in hun haar met theorieën, zoals de relativiteitstheorie, die worden geteisterd door oneindigheden. Vandaar dat er steeds meer stemmen opgaan om oneindig als begrip af te schaffen. Is er een grootste eindig getal denkbaar?
Voor een korte, en grappige, introductie in hoe paradoxaal oneindigheid is, is onderstaand filmpje van Veritasium zeker een aanrader.
Ver hoef je niet te zoeken om binnen de wiskunde op oneindigheden te stuiten. Zo liggen er oneindig veel reële getallen tussen nul en één. Meer zelfs dan het totale aantal natuurlijke getallen. Ook worden veel wiskundige en natuurkundige grootheden gedefinieerd door een limiet over een oneindig bereik te trekken. Ook in de natuurkunde komen veel oneindigheden voor. Volgens de algemene relativiteitstheorie storten sterren met een massa boven de Chandrasekharlimiet bijvoorbeeld ineen tot een punt met een oneindig hoge dichtheid, de singulariteit. Met omringende waarnemingshorizon ook wel bekend als zwart gat. Elektronen worden beschreven als puntdeeltjes. Natuurkundig beschrijf je dit met een Dirac delta-“functie”, een overigens handig gedrocht dat in feite de oppervlakte van een oneindig lange lijn op een eindige waarde (bijvoorbeeld één) stelt. Ongestraft kan dit niet. De deeltjesfysica werd geteisterd door oneindigheden. Meerdere Nobelprijzen werden uitgedeeld aan natuurkundigen die manieren uitvonden om hieraan te ontsnappen.
De oplossing, zegt de wiskundige Doron Zeilberger, is om oneindigheid als begrip af te schaffen. In plaats van oneindig stelt hij een getal voor – door hem N[0] genoemd, dat het grootst denkbare eindige getal is. Tel hier één bij op en het getal wordt gereset in nul. Ongeveer zoals in een computer; als je bij een byte-variabele met waarde 255 één optelt, springt deze weer op nul.
Er zijn inderdaad wiskundige functie waarbij oneindig snel in bijvoorbeeld min oneindig verandert: onder meer de tangensfunctie en meer in het algemeen, functies met de variabele in de noemer. De tangens neemt als de hoek de 90 graden (pi/2 rad) nadert, snel zeer grote waarden aan en is onbepaald bij 90 graden. Om hierna vanuit zeer grote negatieve waarden de nullijn weer te naderen.
Zou bijvoorbeeld de rij met natuurlijke getallen ooit ergens ophouden? Persoonlijk denk ik van niet. Er is een logisch begin aan de reeks natuurlijke getallen: de nul. Er is geen logisch einde. Wel is denk ik ruimtetijd niet wat het lijkt. Sommigen geloven dat er een elementaire minimumlengte bestaat: de Plancklengte. Er zijn proeven gedaan, waarbij het spectrum van gammaflitsen van honderden miljoenen lichtjaren weg gelegen bronnen, is vergeleken met dat van dichterbij gelegen flitsen. Is ruimtetijd korrelig, dan waren er hier veranderingen in opgetreden. Dit bleek niet het geval. Op het eerste gezicht lijkt het dus alsof de ruimte of zeer fijnkorrelig is, of helemaal niet korrelig.
Ik denk alleen dat ons vertrouwen in wat we als ruimte waarnemen, naïef is. Er is alleen iets dat wij als ruimte waarnemen, omdat wij metingen kunnen doen aan deeltjes en andere objecten. De vrijheidsgraden van een golffunctie van een deeltje (bijvoorbeeld een elektron) worden bepaald door de ruimte waarin deze zich bevindt (bijvoorbeeld een doos). Door enkele kwantumfysici worden pogingen gedaan de bewegingsvergelijkingen zo te herschrijven dat ze niet meer afhankelijk zijn van ruimte en tijd, maar puur interactie-georiënteerd worden. Dit is uiteraard hallucinerend moeilijk. Wel zou dit een oplossing betekenen om te ontsnappen aan de continuïteit van de ruimte.
Naar aanleiding van een persconferentie van Russische onderzoekers in Genève stelden lezers Antares en Razor de vraag: hoe kunnen atomen in andere atomen omgezet worden, m.a.w. transmutatie bereiken? Is er een elegantere manier denkbaar dan de tamelijk vervuilende manier die we nu in kerncentrales en kernwapens toepassen?
Atomen en isotopen Atomen bestaan uit positief geladen protonen, neutrale neutronen (beide in de kern) en elektronen, die een wolk rondom de kern vormen. Als twee atomen hetzelfde aantal protonen, maar een verschillend aantal neutronen hebben in een kern, behoren ze tot hetzelfde chemische element, maar vormen ze verschillende isotopen. Er komen in de natuur rond de negentig chemische elementen voor en honderden isotopen. De mens heeft ongeveer dertig chemische elementen gecreëerd, zoals bijvoorbeeld technetium, plutonium en meitnerium. Het gaat hier zonder uitzondering om vrij kortlevende, zeer radioactieve elementen. Bij een elektrisch neutraal atoom zijn er evenveel protonen als elektronen. De chemische eigenschappen van atomen worden vrijwel geheel bepaald door het aantal elektronen. Vrijwel, want er zijn kleine verschillen in reactiviteit tussen bijvoorbeeld de waterstofisotopen deuterium en protium.
Hoe kunnen we zelf atomen maken? Kerncentrale Atomen bestaan, zoals gezegd, uit protonen, neutronen en elektronen. Breng het juiste aantal protonen en neutronen bij elkaar en maak het ontstane atoom neutraal met elektronen, en je hebt in principe je atoom. Althans: in theorie. In de praktijk is het voor ons zeer moeilijk om bijvoorbeeld lood in goud te veranderen.
In een kerncentrale ontstaan uit uranium andere elementen, maar wij kunnen dit proces niet precies sturen omdat kwantumprocessen niet exact voorspelbaar zijn. Wel is bekend in welke proporties de nieuwe elementen en isotopen voorkomen. Zo zit er in standaard kernafval per ton zo’n 1,9 kg ruthenium, 13,3 kg rodium en 1 kg palladium. Rodium en palladium zijn per kilogram kostbaarder dan goud, ruthenium, een onmisbare katalysator, zit op ongeveer 1,20 euro per gram. In principe maakt dit kernafval een waardevolle bron van kostbare metalen. De hoge radioactiviteit maakt zuivering een uitermate kostbaar proces, de reden dat het nog nauwelijks gebeurt. Het is dan wel weer mogelijk de kernreactie zo te sturen dat het percentage gewenste elementen en isotopen zo hoog mogelijk is. Dit gebeurt bijvoorbeeld om plutonium te maken voor atoombommen of, een zinnige toepassing, medische isotopen of isotopen voor de ruimtevaart.
Kernfusie De rond de dertig door de mens gecreëerde nieuwe elementen zijn bijna zonder uitzondering ontstaan door de fusie van lichtere elementen. Door bijvoorbeeld een uranium-238 kern met neon-22 te laten fuseren, levert dit het nieuwe element nobelium op. De zon ontleent zijn energie aan de fusie van waterstof tot helium.
Gammastraling Al langer is bekend dat gammastraling een belangrijke rol speelt in supernova’s bij het ontstaan van bepaalde isotopen, de zogenoemde fotodisintegratie. De kernfysici Hiroyasu Ejiri en S. Date zijn er in 2011 in geslaagd om met behulp van gammastraling een niet-radioactieve isotoop in een radioactieve isotoop om te zetten (Tor browser link). Dit werkt ongeveer als volgt. Door aan een bepaalde atoomkern een precieze hoeveelheid energie toe te voeren, in de vorm van een foton gammastraling, komt er voldoende vrij voor een kwantumovergang waardoor bijvoorbeeld een neutron in een proton verandert. Dit werkt maar bij een paar procent van alle atoomkernen, maar in principe is uiteraard de toevoer van gammastraling onbeperkt, waardoor uiteindelijk alle atomen kunnen worden omgezet.
Koude kernfusie Er doen in alternatieve kringen hardnekkige geruchten de ronde dat het mogelijk is om bij lage temperaturen kernfusie te bereiken, de zogenoemde LENR of low-energy nuclear fusion. Door bijvoorbeeld protonen te laten fuseren met een middelzware atoomkern zoals ijzer, zou er netto een behoorlijke hoeveelheid energie vrijkomen (de bindingsenergie per nucleon van de nieuwe, zwaardere kern is ongeveer gelijk aan die van ijzer. Die van een los proton is nul, waardoor er netto energie vrijkomt). Middelzware atoomkernen hebben een veel breder vang-energiespectrum en nucleaire doorsnede dan bijvoorbeeld een kleine deuteriumkern. Hiermee zijn ze veel gemakkelijker te raken dan deze: het energiespectrum van protonen kan in principe veel breder zijn. Daarom is het bijvoorbeeld veel gemakkelijker om boor te laten fuseren dan waterstof.
Wel blijft het centrale probleem. De afstoting tussen twee positief geladen atoomkernen is zeer sterk. Deze afstoting moet overwonnen worden, wat zeer lastig is bij lage temperaturen. De enige vorm van koude kernfusie die aantoonbaar werkt, is muon-gekatalyseerde fusie. Muonen zijn een instabiele, zwaardere variant van elektronen en bevinden zich door hun hoge massa veel dichter bij de atoomkern dan elektronen, waardoor ‘muon-atomen’ honderden malen kleiner zijn en fusie gemakkelijker is. Helaas is het produceren van voldoende muonen dat bepaald niet – muonen leven namelijk zeer kort, 2,2 miljoenste seconde.
De koude-kernfusie onderzoeksgemeenschap probeert na de fail van Fleischmann en Pons al sinds de jaren tachtig – onder grote persoonlijke opofferingen – dit doel te bereiken. Koude kernfusie zou, als het werkt, onze energieproblemen oplossen, in principe geen radioactief afval opleveren en het ook mogelijk maken nieuwe elementen te produceren. De mainstream wetenschap reageert met uitstoting, dit terwijl er bij LENR naast de nodige oplichters, ook honderden bona fide onderzoekers betrokken zijn die de wetenschappelijke methode nauwgezet en integer volgen. Hoewel er nog steeds geen harde bewijzen zijn voor LENR, bijvoorbeeld een pocket kerncentrale voor in je laptop, is het in principe een legitiem onderzoeksdoel, dat nagestreefd kan worden door middel van bona fide wetenschappelijk onderzoek.
Pseudomaterie We zeiden het al: wat atomen hun chemische eigenschappen geeft is het aantal van hun elektronen. In natuurlijke atomen worden elektronen op hun plek gehouden door de positief geladen atoomkern. Je zou elektronen ook kunnen vasthouden in een quantum corral, een kwantumheining. Ze vormen dan ook dezelfde energieniveaus en kunnen ook chemische bindingen aan gaan. Voordeel aan deze programmeerbare materie is ook dat het ene atoom eenvoudig in het andere is om te zetten. De natte droom van veel chemici. Wel is het technisch uitdagend om dit te implementeren.
“Biochemische methode” Een groep Russische en Oekraiense onderzoekers, Tamara Sakhno en Viktor Kurashov, met een marketingman, Vladislav Karabanov, beweert nu dat ze in staat zijn om elementen te transmuteren door gestimuleerde emissie van alfadeeltjes (heliumkernen). De aanleiding tot deze Lezersvraag. De video dateert van voor 2016, en is ondertussen verdwenen van Youtube.
We hebben de bron er bij gezocht. Het gaat om een groep, die claimt dat ze een biochemische methode hebben ontwikkeld om elementen te transmuteren. Dit is in principe complete onzin en wel hierom. Chemische reacties hebben betrekking op elektronen, niet op protonen en neutronen. De energieniveaus bij kernreacties liggen drie ordes van grootte (duizenden malen) hoger dan bij zelfs de meest energetische chemische reacties. Om een proton in de buurt te krijgen van een ijzerkern is een energie van meer dan 2 MeV nodig. Dit vereist dat je tientallen ouderwetse beeldbuizen achter elkaar zet (of een spectaculair vonkencircus met 2 tot 3 miljoen volt). Dit is maar één orde van grootte minder dan de hoogste spanning ooit geproduceerd door de mens, 32 miljoen volt. Alleen bliksemschichten kunnen in de natuur deze enorme voltages opwekken en inderdaad, bliksemschichten produceren neutronen, wat wijst op kernreacties tijdens onweer. Dit is uitgesloten in chemische reacties.
Wetenschappers op zwart zaad
Als ik een dergelijke methode kende en, zoals deze mensen, stinkend rijk wilde worden, zou ik mijn mond dichthouden en flink wat kilootjes kostbare metalen produceren en verkopen. Of voor tienduizenden put opties op goudaandelen kopen en dan de technologie openbaar maken. Kortom: deze claim kan je maar beter totaal niet serieus nemen, totdat de twee heren en dame met keihard, repliceerbaar experimenteel bewijs komen. Dit lijkt dan ook een poging van onderbetaalde onderzoekers te zijn geweest om te ontsnappen uit de armoede.
De bekende Youtube natuurkundige Sabine Hossenfelder, in haar jaren als postdoc bezig met de ontwikkeling van de snaartheorie, is gedesillusioneerd geraakt in de vooruitgang van de natuurkunde. Nuchter stelt ze vast dat er sinds de zestiger jaren, na de gelijktijdige ontwikkeling van de algemene relativiteitstheorie en de kwantummechanica, nauwelijks vooruitgang is geboekt. De oorzaak volgens haar: een wildgroei aan theorieontwikkeling zonder dat experimenten daar aanleiding toe geven.
We schreven er al vaak over: het Standaardmodel is het leidende natuurkundige model dat met een ongelofelijke precisie alle natuurkundige waarnemingen kan voorspellen en verklaren. Het is een ongemakkelijk “huwelijk” tussen de kwantummechanica, die het gedrag van deeltjes beschrijft, en de algemene relativiteitstheorie, die ruimte en tijd beschrijft. Ook zitten er in het model enkele rafels. Daarom werken theoretisch natuurkundigen al meer dan een halve eeuw aan theorieën, die deze twee theorieën kan samensmeden en de rafels wegwerkt. Tot nu to zonder veel succes.
Weliswaar zijn er theorieën ontwikkeld, vaak wiskundig zo mooi dat de bedenkers, en hun medestanders, de tranen in de ogen springen, maar deze leiden niet tot experimenteel toetsbare nulhypotheses. En waar deze wel getoetst kunnen worden, worden keer op keer de algemene relativiteitstheorie en de kwantumveldtheorieën die de sterke wisselwerking, de zwakke wisselwerking en de elektromagnetische wisselwerking beschrijven, tot op vele decimalen bevestigd.
Er zijn twee mogelijke uitkomsten. De eerste is dat er werkelijk niet meer is dan het hier-en-nu, en dat het Standaardmodel zowel volledig is, als compleet en juist. Op het eerste gezicht geven de experimentele uitkomsten hier aanleiding toe. De tweede mogelijkheid is interessanter. Deze is, dat we iets voor de hand liggends over het hoofd zien, dat we het universum alleen maar domme vragen stellen. Deze tweede mogelijkheid is veel inspirerender en, denk ik persoonlijk, ook veel productiever.
Wel moeten we vaststellen dat de tot nu toe gevolgde benaderingen, vooral de snaartheorie, niet blijken te werken. Sabine denkt dat we verkeerd kijken. Geen wonder, degenen die bepalen waar onderzoeksgeld heen gaat zijn gevestigde natuurkundigen die op safe willen spelen om hoog te kunnen scoren in publicatie-indexen. Niemand durft risico te nemen. Als je je als natuurkundige bezighoudt met een populair onderzoeksveld zoals de snaartheorie, word je vaak geciteerd. De kans zit er dan dik in dat je een gewilde vaste aanstelling krijgt. Gebruik je een minder populaire benadering, zoals bijvoorbeeld loop quantum gravity of Causal Dynamical Triangulations, dan kan je maar beter gaan solliciteren voor een baantje als data scientist bij de Belastingdienst of bij een beleggingsfirma.
Wat wel werkt? Ik ben geen theoretisch natuurkundige, dus past mij een behoorlijke portie bescheidenheid. Ik denk dat we aandachtiger moeten kijken naar de imaginaire component van kwantummechanische vergelijkingen. Vaak worden deze weggegooid aan het einde van een berekening, Want wat imaginair is, bestaat niet. Klopt dat wel? Dat laatste is de vraag.
Tachyonen zijn theoretisch mogelijk volgens de speciale relativiteitstheorie, maar hebben nogal absurde eigenschappen. Ze zouden kunnen verklaren waarom donkere materie zich gedraagt zoals deze zich gedraagt, beweert een groepje natuurkundigen.
Wat zijn tachyonen precies?
Tachyos is klassiek Grieks voor snel, en inderdaad is snelheid de kenmerkende eigenschap van deze hypothetische deeltjes. De speciale relativiteitstheorie van Einstein sluit uit dat normale materie sneller beweegt dan het licht. Want dan zou de massa imaginair worden.
Voor wie niet te bang is voor een beetje wiskunde: als de snelheid (v) groter wordt dan de lichtsnelheid (c), wordt datgene wat onder het wortelteken staat, negatief. En als je de wortel trekt van een negatief getal, krijg je een imaginair getal, en hier dus een imaginaire massa. Wat een imaginaire massa is, weet nog niemand. Maar het is wel een zeer fascinerend idee.
Maar dit verandert, als we deeltjes verzinnen die nooit langzamer dan de lichtsnelheid kunnen bewegen. Deze bijzondere deeltjes, met imaginaire in plaats van gewone massa, worden tachyonen genoemd. Als tachyonen werkelijk bestaan, zouden we sneller dan het licht boodschappen kunnen versturen en reizen. We zouden zelfs terug in de tijd kunnen reizen. Dit is precies de reden dat natuurkundigen wat in hun maag zitten met het concept. Want er kunnen dan causale lussen ontstaan, zoals de grootvaderparadox. Stel, je vermoordt je grootvader met een tachyonenbundel op een tijdstip voordat jouw ouder verwekt is. Bijvoorbeeld omdat je hem een enorme eikel vindt, omdat hij je als kind geen ijsje gaf. Dan kan je niet bestaan.
Tachyonen als verklaring voor zowel donkere energie als donkere materie
De reden dat deze theorie toch de nodige aandacht krijgt, is dat deze twee netelige problemen oplost. Het model van de twee onderzoekers verklaart namelijk zowel vrij nauwkeurig de eerst vertragende, en daarna versnelde uitzetting van het heelal, als de donkere materie. Het is daardoor niet meer nodig om donkere energie als extra factor op te nemen. Een alternatief model, waarbij je een getal minder hoeft te verzinnen om het heelal te verklaren en ook nog eens een wat betere fit heeft met de gegevens, is wetenschappelijk hele interessant. Hoe simpeler een theorie is die toch de waarnemingen verklaart, hoe beter. Wat dat betreft doet dit model het dus beter dan de bestaande theorie.
Tachyonen, echt onzichtbaar
Omdat tachyonen nooit direct met zichtbare materie kunnen interageren (hooguit via lichtdeeltjes, daarnaast de zwaartekracht), zijn ze niet in deeltjesdetectoren waar te nemen. Tachyonen, zoals gezegd, zorgen voor behoorlijk wat opschudding in onze gevestigde ideeën over causaliteit en tijd. Vandaar dat de gemiddelde natuurkundige nog niet overtuigd is van het model. Maar mogelijk is ons beeld van de realiteit, en van causaliteit, naïef en onvolledig. Mogelijk is er een hogere vorm van causaliteit, die we nu nog niet kennen. Of maakt de ongeorganiseerde vorm van de tachyonen ze juist niet problematisch, omdat je dan geen informatie via tachyonen kan versturen. En dus ons idee van oorzaak en gevolg toch overeind blijft.
Het gedrag van sterren in het binnenste deel van de Melkweg kan alleen verklaard worden, als er iets als donkere materie bestaat. Dat blijkt uit berekeningen van astronomen.
Dat iets als donkere materie bestaat, hebben astronomen voor het eerst ontdekt door het vreemde gedrag van sterren in sterrenstelsels. Sterren in het buitenste deel van de Melkweg draaien veel sneller rond het centrum van de Melkweg, dan verwacht. Astronomen verklaarden dat door aan te nemen, dat er in het binnenste deel van de Melkweg materie zit die wij niet kennen. Deze oefent wel zwaartekracht uit maar we kunnen deze materie niet waarnemen. Dit is de reden dat dit donkere materie wordt genoemd.
Behalve donkere materie is er nog een concurrerende theorie. Deze zegt, dat onze natuurwetten op de schaal van sterrenstelsels niet meer kloppen, althans de zwaartekracht. Deze theorie kon tot nu toe vrij goed de waarnemingen verklaren, zonder aan te nemen dat er donkere materie bestaat. Maar met deze nieuwe waarneming heeft de theorie meer moeite.
Vooral in het allerbinnenste deel van de Melkweg draaien sterren veel langzamer rond dan verwacht .In het galactische centrum bevindt zich een soort balk van sterren. Astronomen hebben van duizenden sterren in deze balk de snelheid bepaald. Uit berekeningen blijkt, dat de rotatiesnelheid van de sterren met 13% afneemt per miljard jaar. Als er zich geen donkere materie in het centrum van de Melkweg zou bevinden, zou niets de sterren kunnen afremmen. maar dat blijkt dus wel degelijk het geval te zijn. De verklaring is, dat sterren om het zwaartekrachtsmiddelpunt (het Lagrangepunt) bewegen. De ronddraaiende sterren dragen via allerlei zwaartekrachtswisselwerkingen hun energie over aan de donkere materie. Daardoor gaat de donkere materie sneller bewegen, maar de sterren langzamer. In de loop van miljarden jaren was het effect spectaculair. De balk draait nu 24% langzamer dan hij in het begin deed. Hoe zou de Melkweg er over een paar miljard jaar uitzien?
Volgens eerdere studies vereist het warp veld van een Alcubierre drive enorme hoeveelheden energie. Deze hoeveelheden liggen nu twee ordes van groter lager. Dat brengt een warp drive in de toekomst binnen bereik, zonder dat we een planeet zo groot als Jupiter op moeten stoken voor de aandrijving.
De Alcubierre-warpaandrijving is een exotische oplossing van de algemene relativiteitstheorie. Het maakt sneller dan licht reizen mogelijk, maar vereist enorme hoeveelheden materie met een negatieve massadichtheid. Om deze reden zien de meeste natuurkundigen de Alcubierre-warpaandrijving als “on-fysisch”, een aandrijving zonder praktisch toepasbare waarde. In deze studie ontwikkelden de auteurs een model van een andere, algemene ruimtetijd in de klassieke relativiteitstheorie. Dit nieuwe model omvat alle bestaande definities en maakt nieuwe metrieken mogelijk zonder de ernstigste problemen die aanwezig zijn in de Alcubierre-oplossing.
Bestuurbare drive, geschikt voor een ruimteschip
In dit artikel presenteren beide auteurs het eerste algemene model voor subliminale positieve energie. Onderdeel hiervan zijn bolvormige warpbollen: sneller dan licht ruimte-tijden die aan kwantumongelijkheden voldoen. Ook opgenomen zijn optimalisaties voor de Alcubierre-metriek die de negatieve energiebehoeften met twee ordes van grootte verminderen. Met andere woorden: er is honderden malen zo weinig negatieve energie nodig. Ook introduceren beide auteurs een warp drive-ruimtetijd waarin de ruimtecapaciteit en de snelheid van tijd op een gecontroleerde manier kunnen worden gekozen. Met andere woorden: een warpveld dat kan worden bestuurd, dus bruikbaar is voor een ruimteschip.
Warp drive kan met bekende materie
Elke warpdrive, stellen de auteurs, inclusief de Alcubierre aandrijving, is een omhulsel van normaal of exotisch materiaal dat traag beweegt met een bepaalde snelheid. Daarom vereist elke warpaandrijving voortstuwing. Volgens het artikel kunnen we een klasse van subluminale, sferisch symmetrische (bolvormige) warp-aandrijf ruimtetijden, althans in principe, maken op basis van de natuurkunde van nu.
En, uiterst belangrijk, exotische materie is dus niet meer nodig, een warp drive bouwen kan in principe met onze “huis-tuin-en-keuken” bekende deeltjes van het Standaardmodel.
Vliegende schotel meest energie efficiënte vorm
Saillant detail: de meest veelbelovende vormen van warpruimtes hebben de vorm van een schotel, aldus het artikel. Dus zo ver naast zaten de bedenkers van Star Trek er niet. Als er in de toekomst inderdaad sneller-dan-licht schepen gebouwd gaan worden, is er dus een goede kans dat ze veel weg hebben van de Enterprise, of de vliegende schotels uit de UFO-folklore.
Met de nodige mitsen en maren: en reken maar op nog heel wat technische hordes: groot nieuws. Rest van het heelal, we komen er aan!
Mogelijk bestaan er deeltjes die quarks in leptonen kunnen omzetten en andersom: de leptoquarks. Wat is een leptoquark?
Leptoquark: Quarks en leptonen
Alle stabiele, bekende (baryonische) materie bestaat uit quarks en leptonen. Om precies te zijn: de lichtste versies hiervan, de “eerste generatie”. Dit zijn het elektron en de up- en downquark. De tweede generatie zijn muon en charm/strange quarks. De derde, zwaarste generatie bestaat uit het tauon en top/bottom quarks. De tweede en derde generaties leven erg kort en komen, voor zover we weten, alleen in deeltjesversnellers en kosmische straling voor. Protonen bestaan uit twee up-quarks en een down-quark; neutronen bestaan uit één up-quark en twee down-quarks. Hieronder een handig overzichtje van alle deeltjes in het Standaardmodel. Elektron-, muon- en tauneutrino zijn vrijwel massaloos.
Quarks hebben een merkwaardige lading. Up-quarks +2/3, down-quarks -1/3. Merkwaardig, omdat elektronen wél een gehele lading hebben: -1. Zouden er nog fundamentelere deeltjes dan elektronen bestaan? Deze vraag inspireerde de bedenkers van het leptoquark model. Maar wat zijn leptoquarks precies?
To be or not to be: bestaan leptoquarks?
Natuurkundigen zijn altijd op zoek naar eenvoud. Het Standaardmodel (SM) kan in theorie een stuk simpeler. Bijvoorbeeld, als de quarks en leptonen in elkaar omgezet zouden kunnen worden. Dit met een extreem zwaar boodschapperdeeltje. Dit deeltje moet dan het baryongetal en leptongetal kunnen veranderen: het leptoquark. Eén ding weten we: dit hypothetische deeltje moet een stuk zwaarder zijn dan alle eerder ontdekte deeltjes. De massa moet minimaal een TeV/c^2 zijn. M.a.w. minstens duizend maal zo zwaar zijn als een proton. Dit ligt boven het maximale vermogen van de CERN deeltjesversneller. Anders hadden we dit deeltje nu al ontdekt.
Als een leptoquark uit elkaar valt, gebeurt dit in een lepton en een quark. De theorieën met leptoquarks verzamelden tot nu toe stof in de la. Maar nu wordt dat anders, want de metingen kloppen niet meer met het SM. De spanning stijgt daarom.
Onverklaarbare b-meson anomalieën veroorzaakt door het leptoquark?
Metingen aan het vervalproces van b-mesons wijken af van de voorspellingen van het Standaardmodel. Deze afwijkingen zijn vrij fors, maar nog niet betrouwbaar genoeg vastgesteld (met zes sigma). Daarom houden de onderzoekers van het CERN nog een slag om de arm. Dit is ook de enige plek, waar de gemeten waarden afwijken van de voorspelling van het Standaardmodel. Geen wonder dat de spanning stijgt. Zijn we nu nieuwe natuurkunde op het spoor?
Geen leptoquarks gevonden, wel ondergrens massa bepaald
De Large Hadron Collider heeft de afgelopen jaren enorm veel data opgeleverd waar nu tal van analyses op losgelaten worden. Het Compact Muon Solenoid (CMS)-team zocht naar leptoquarks van de derde generatie in een datamonster van proton-protonbotsingen. Dit monster is afkomstig uit de data van botsingen van de Large Hadron Collider (LHC) met een energie van 13 TeV. Deze werden geregistreerd door het CMS-experiment tussen 2016 en 2018. [2]
Specifiek zocht het team naar paren leptoquarks die veranderen in een top-down quark en een tauon of tau neutrino, evenals naar ‘losse’ leptoquarks die samen met een tau neutrino worden geproduceerd en transformeren in een top quark en een tauon. De CMS-onderzoekers vonden geen enkele aanwijzing dat dergelijke leptoquarks bij de botsingen werden geproduceerd. [3]
Ze waren echter wél in staat om ondergrenzen aan hun massa te stellen. Als leptoquarks van de derde generatie bestaan, zijn ze minstens 0,98–1,73 TeV/c^2 in massa.[3] Dit is dan weer afhankelijk van hun spin en de sterkte van hun wisselwerking met een quark en een lepton. Deze grenzen zijn enkele van de strengste tot nu toe voor leptoquarks van de derde generatie. Dankzij deze grenzen kan een deel van het leptoquark massabereik dat de B-meson anomalieën zou kunnen verklaren, worden uitgesloten. Met hierbij alle theorieën die het bestaan van deze lichtere leptoquarks vereisen.
Goed nieuws: voorlopig blijven we nog bestaan
Dat is goed nieuws, althans als deze hoge massa ook voor eerste-generatie leptoquarks geldt. Want hoe zwaarder het leptoquark, hoe kleiner de kans dat het spontaan ontstaat uit het vacuüm en een proton uit elkaar laat vallen. Dus blijven protonen nog quadriljoenen jaren stabiel. En aangezien wij voor een groot deel uit protonen bestaan, is dat best wel een geruststellende gedachte…
Er is naar schatting ongeveer vier maal zoveel donkere materie, als baryonische (standaard) materie. Van de zwaartekrachtswisselwerking van donkere materie merken we veel, maar in deeltjesdetectoren ontbrak tot nu toe elk spoor. Maar mogelijk is daar nu verandering in gekomen.
Spookachtige donkere bosonen
Een belangrijke kandidaat voor donkere materie zijn extreem lichte deeltjes die zwak op elkaar inwerken. We kennen al één vorm van dergelijke deeltjes: de spookachtige neutrino’s. Neutrino’s wisselwerken alleen via de zwakke kernkracht en de zwaartekracht. Dit betekent dat we neutrino’s alleen waar kunnen nemen door radioactieve reacties in het uiterst zeldzame geval dat ze die opwekken. De hypothetische steriele neutrino’s, een van de kandidaten voor donkere materie, zijn alleen via de zwaartekracht waar te nemen. Met een hoge-energie supercollider zijn deze en andere lichte deeltjes niet waar te nemen, maar met alternatieve methoden mogelijk wel. Veel onderzoekers zijn hier mee bezig.
Wat zijn donkere bosonen?
Donkere bosonen is een verzamelnaam voor alle kandidaten van donkere materie die dezelfde kwantumgetallen kunnen hebben in elkaars buurt (dus: zonder elkaar af te stoten op elkaar geplaatst kunnen worden). Vooral de lichtere deeltjes binnen deze verzameling, ‘lichte donkere bosonen’, staan in de belangstelling. Zij zouden als ze met een atoom in aanraking komen, namelijk de energieniveaus van elektronen moeten veranderen. Onderzoekers over de hele wereld hebben daarom geprobeerd alternatieve technologieën en methoden te ontwikkelen die de detectie van deze deeltjes mogelijk maken. Een veelbelovende benadering is het meten van de verschillen in energieniveaus van verschillende isotopen. In de spectra van koolstof-12, koolstof-13 en koolstof-14, bijvoorbeeld, zit een miniem verschil in het energieniveau van een aangeslagen elektron. Dat komt door het massaverschil in de kern van steeds één neutron extra. Als er in het atoom niets anders is dan protonen, neutronen en elektronen, zal het verschil in een bepaalde overgang tussen koolstof-12 en koolstof-13 precies even groot zijn als het verschil in diezelfde overgang tussen koolstof-13 en koolstof-14. Is er nog een onbekend deeltje bij betrokken, dan zal een lijn die getrokken wordt door deze waardes afwijken van een rechte lijn: de voorspelling van het Standaardmodel.
Nieuwe aanwijzing voor donkere bosonen gevonden
Omdat de verschillen hier echt miniem zijn, moet precisiespectroscopie toegepast worden om deze waar te kunnen nemen. In hun experimenten onderzochten de teams van de Deense Universiteit van Aarhus (met calciumionen[1]) en de Usaanse MIT (met ytterbiumionen[2]) deze overgangen. Het team van Aarhus mat een rechte lijn (wat overeenkomt met de rechte lijn van het Standaardmodel), maar de groep van het MIT mat een afwijking in het ytterbiumspectrum. Deze afwijking was relatief klein, drie sigma (een kans van 0,3 procent dat de waarnemingen op toeval berusten is naar natuurkundige begrippen nog te hoog; zes sigma, 0,00033 procent was de standaard voor bijvoorbeeld de bevestiging van het Higgsdeeltje) maar wijst er toch op dat er waarschijnlijk “iets” aanwezig is. Het is goed mogelijk, dat de gebruikte benadering van het Standaardmodel bij het ytterbiumion niet volledig is en dat dit de afwijking verklaart, maar er is eveneens een goede kans dat dit het eerste echte spoor is van een nog onbekend deeltje.
Al eerder werden er aanwijzingen voor een nog onbekend deeltje aangetroffen in een met xenon gevuld vat diep onder de Italiaanse berg Gran Sasso. Verdere metingen en het uitwerken van het theoretische model moeten duidelijkheid opleveren.
Bronnen
1. Improved Isotope-Shift-Based Bounds on Bosons beyond the Standard Model through Measurements of the 2D3/2−2D5/2 Interval in Ca+. Physical Review LettersDOI: 10.1103/PhysRevLett.125.123003.
2. Evidence for nonlinear isotope shift in Yb+ search for new Boson. Physical Review Letters DOI: 10.1103/PhysRevLett.125.123002.
Een team natuurkundigen van de universiteit van Arkansas is er naar eigen zeggen in geslaagd om energie uit afvalwarmte op te wekken. Hun ontwerp maakt gebruik van de Brownse beweging: de willekeurige bewegingen op microscopische schaal door lokale oneffenheden. Hebben ze de Tweede Hoofdwet van de Thermodynamica gekraakt?
Wat is de Brownse beweging?
Wat op macroschaal een oase van rust lijkt, is dat allesbehalve. De moleculen in lucht hebben alle verschillende snelheden en richtingen. Wat wij waarnemen is het gemiddelde van ontelbare miljarden moleculen die ons onophoudelijk treffen. Dit gemiddelde nemen we waar als luchtdruk. Op kleinere schaal, kleiner dan een micrometer, is er geen stabiel evenwicht meer. Geregeld treffen meer (of juist minder) moleculen het deeltje in de ene richting, dan in de tegenovergestelde richting. Als gevolg hiervan maakt het stofje een wanordelijke beweging. Deze Brownse beweging is met een microscoop waar te nemen aan bijvoorbeeld rookdeeltjes.
Hoe kan je hier energie uit opwekken?
Alles wat beweegt, kan je gebruiken om elektriciteit mee op te wekken. Stel,. je zou aan het rookdeeltje een minuscule dynamo of andere generator bevestigen, dan kan je er in theorie stroom mee opwekken. Op het eerste gezicht lijkt dit een perpetuüm mobile van de tweede categorie: een machine die warmte onttrekt aan de omgeving waarmee iets nuttigs is te doen. Een dergelijk apparaat is erg handig: je kan dan je stroomabonnement opzeggen en je smartphone hoeft nooit meer aan de lader. Kortom; het klinkt te mooi om waar te zijn en dat is het ook. Want de Tweede Hoofdwet van de Thermodynamica verbiedt dat er bij een energieomzetting vrije energie bij komt. Of is er toch hoop?
Graphene Animation
Ja, zo blijkt uit een experiment met grafeen aan de universiteit van Arkansas. In de proefopstelling wordt het eigenlijke werk verricht door twee blaadjes grafeen tegenover elkaar. Deze één atoomlaag dikke koolstofblaadjes ‘wapperen’ voortdurend onder invloed van de Brownse beweging. Omdat ze tegenover elkaar zijn geplaatst, werken ze als een condensator. Als ze elkaar naderen, neemt de lading op beide plaatjes toe, als ze van elkaar verwijderd raken, stroomt deze weg. In de opstelling zijn twee diodes opgenomen: elektronische componenten die alleen eenrichtingsverkeer toelaten. De “gevangen” elektronen kunnen alleen via de energie-oogster (bijvoorbeeld een accu) terugvloeien. Het netto resultaat: warmte wordt omgezet in elektriciteit.
En de Tweede Hoofdwet dan? De specifieke versie van de Tweede Hoofdwet: er ontstaan niet uit zichzelf temperatuursverschillen, lijkt met deze proefopstelling niet gebroken volgens onderzoeksleider Thibado. Op grotere schaal lijkt op het eerste gezicht echter wel degelijk sprake van een schending. Immers, als de proefopstelling afkoelt omdat er energie aan onttrokken wordt, ontstaat er wel degelijk uit het niets een temperatuursverschil met de rest van het universum. Ook is het geleverde vermogen laag, in de orde van picowatts. Zeg voorlopig dus uw elektriciteitsleverancier niet op. Maar als proof of principe is deze ontdekking uiterst belangrijk.
Het artikel is gepubliceerd in Physics Review E, een vooraanstaand natuurkundeblad.
Stel je voor: nooit meer je smartphone aan de lader, alleen om de paar jaar de accu verwisselen. Dit ook met je laptop, je auto en andere oplaadbare apparaten. Science fiction? Niet lang meer, als het aan de startup NDB uit Californië ligt.
Wat is koolstof-14?
Niet alle atomen zijn gelijk. Ze verschillen onderling niet alleen in het aantal protonen (wat bepaalt hoe ze zich chemisch gedragen), maar ook in het aantal neutronen in de kern. Zo is elk atoom met 6 protonen in de kern een koolstofatoom, maar verschilt het aantal neutronen per variant. Deze varianten noemen we isotopen. Koolstof kent naast de twee stabiele isotopen, koolstof-12 en koolstof-13, met 6 protonen en 6 resp. 7 neutronen, ook meer dan tien radioactieve isotopen die na verloop van tijd uiteenvallen. Een daarvan is koolstof-14. Deze radioactieve isotoop heeft twee neutronen extra, waardoor deze atoomkern instabiel is geworden en in gemiddeld 5.730 jaar uiteenvalt in een elektron (bètastraling) en stabiel stikstof-14. Koolstof-14 is vooral bekend als erg nuttig hulpmiddel om te bepalen hoe oud bepaalde organische archeologische resten zijn. Als er nog maar de helft van het koolstof-14 over is, weten we dat de resten 5.730 jaar oud zijn.
Bètavoltaïsche batterij
De manier waarop koolstof-14 uiteenvalt maakt deze isotoop ook voor energieopslag erg interessant. Elektronen onder een spanningsverschil zijn namelijk de bron van elektriciteit. Als we in staat zijn om deze elektronen op te vangen en hun spanning af te tappen, hebben we een batterij. Een bètavoltaïsche batterij die letterlijk duizenden jaren meegaat. Een kilogram puur koolstof-14 levert, als deze in zijn geheel uiteenvalt in stikstof-14, 337 gigajoule. met andere woorden: evenveel als een inslag van een grote meteoriet zoals die in Chelyabinsk, of vergelijkbaar met het verbranden van 10 kuub benzine. Kortom: behoorlijk veel voor een batterij van een kilo. Het goede (of slechte) nieuws is dat deze energie langzaam vrijkomt. Dit blok levert iets minder dan 2 watt vermogen, waarvan slechts een klein deel kan worden afgetapt. Maar dit onophoudelijk, gedurende duizenden jaren. Het lage vermogen dat deze isotoop levert maakt het vooral interessant voor zeer langdurige toepassingen.
Bijzonder aan deze nieuwe techniek is de laag rond de isotoop zelf, die de elektronen invangt en in elektriciteit omzet. Deze bestaat uit kunstmatige diamant. Diamant is het hardste materiaal wat we kennen en ook een halfgeleider. Dit maakt diamant erg geschikt als beschermmateriaal. Omdat het hier om een bètastraler gaat, kan de diamant niet radioactief worden.
‘Diamond-age’ of power generation as nuclear batteries developed
En korterlevende isotopen? Zoals tritium?
In principe kan iedere handelbare betastraling afgevende isotoop als “vulling” voor de diamantcapsule worden benut.Tritium, de enige radioactieve waterstofisotoop, met 2 extra neutronen, heeft bijvoorbeeld een veel kortere halfwaardetijd: rond de 12 jaar. Ook tritium is een bètastraler en valt onder uitzending van een elektron uiteen tot helium-3. Hierbij komt alleen veel minder energie vrij: een kilogram tritium levert bij uiteenvallen ongeveer 165 gigajoule aan bewegingsenergie van elektronen op (de rest verdwijnt in het heelal als antineutrino). Pluspunt is wel weer dat deze energie in een veel kortere tijd vrijkomt, waardoor het vermogen vele malen hoger is dan dat van koolstof-14: 450 watt per kilogram, in 12 jaar teruglopend tot de helft. Dit zou tritiumbatterijen erg interessant maken voor elektrische auto’s en smartphones. Gesteld dat we een goedkope methode ontwikkelen om aan tritium te komen. Op dit moment is het goedje peperduur.
Ook andere isotopen van koolstof en andere elementen zijn bruikbaar. Ze moeten slechts aan enkele eisen voldoen: louter en alleen uiteenvallen in elektronen en eventueel neutrino’s (pure bètastralers), voldoende energie afgeven voor de beoogde toepassing, voldoende lang meegaan en veilig opgeborgen kunnen worden in een diamanten omhulsel. In de eerste prototypes van Russische onderzoeksgroepen is bijvoorbeeld gewerkt met nikkel-63, een isotoop met een halfwaardetijd van een kleine eeuw [2].
Welke isotopen gebruikt NDB?
De startup NDB doet op haar voorpagina boude claims over batterijen die in staat zouden zijn smartphones, auto’s en andere energieslurpende apparaten te voorzien van permanente energie. Claims die je, althans vermogen, alleen waar kan maken met tritium of een andere kortlevende bèta-isotoop, maar niet met koolstof-14 dat de radioactiviteit uitsmeert over duizenden jaren.
Op de “technology” pagina [1] doet het bedrijf erg geheimzinnig over de gebruikte radioactieve isotopen. Enkele citaten lichten echter een tipje van de sluier op. Zo komen er neutronen vrij: “Boron-doped SCD” moet neutronen invangen en omzetten in alfadeeltjes (heliumkernen). Dus duidelijk zijn dit niet alleen bètastralers. Elders spreekt men over “fissionable isotopes”, zoals Pu-238 en U-232. Dit is geen relatief onschuldige koolstof-14 uit grafietblokken meer en doet vermoeden dat men zijn heil zoekt in het verwerken van hoogradioactief kernafval in batterijen. Als dit op een veilige manier kan: waarom niet? Met alfa- en bètastralers kan dit, maar helaas niet met neutronenstraling. Neutronen zijn qua gezondheid uitermate vervelende deeltjes – ze veranderen stabiele atoomkernen in radioactieve kernen als ze ingevangen worden in de atoomkern. Neutronen houd je alleen tegen met een meter beschermend water of soortgelijk materiaal, wat uiteraard alleen praktisch is voor een atoomonderzeeër. Of in een reactor, om tritium te produceren uit deuterium. Die je dan in je batterij stopt. Wat uiteraard een stuk slimmer is.
Bronnen
1. NDB: Technology
2. V.S. Bormashov et al, High power density nuclear battery prototype based on diamond Schottky diodes, Diamond and Related Materials (2018). DOI: 10.1016/j.diamond.2018.03.006