Massale kwantumverstrengeling opent poort naar nieuwe natuurkunde

Share Button

Voor het eerst zijn onderzoekers van de Engelse universiteit van Oxford er in geslaagd om tien miljard deeltjes tegelijkertijd met elkaar te verstrengelen. Dit is een belangrijke doorbraak voor kwantumcomputers, maar er zijn meer gevolgen. Veel meer. Zo komt het moment dichterbij dat we er eindelijk achter kunnen komen wat grote schaal kwantumverstrengeling voor fysische effecten heeft in het dagelijks leven.

Silicium in een extreem sterk magnetisch veld
Het experiment werd uitgevoerd in silicium, het materiaal waar op dit moment alle computerchips van vervaardigd worden. Het silicium werd geplaatst in een extreem sterk magnetisch veld. Het silicium bevatte (in vaktermen: was gedoopt met) een groot aantal fosforatomen. Alle elektronen vormen gewoonlijk paren waarbij elke partner een tegengestelde spin heeft. Fosfor heeft een oneven aantal elektronen dus is er een vrij, ongebonden elektron.

De onderzoekers slaagden er in van dat vrije elektron de elektronspin (spin is een kwantumeigenschap die je het beste kan vergelijken met draairichting, al zijn er in de kwantumwereld maar twee draairichtingen, omhoog en omlaag en dat ook nog in stappen van een half tot maximaal plus of min twee)  te verstrengelen met de spin van de atoomkern van fosfor. Draaiende elektrisch geladen dingen, dus ook deeltjes zoals de negatieve elektronen en de positieve atoomkernen, wekken een magneetveld op. Dit is ook de reden van het sterke magnetische veld, hiermee worden alle elektronen gedwongen in precies dezelfde richting te tollen, de atoomkernen in precies de omgekeerde richting.

Bij verstrengeling beïnvloeden deeltjes elkaar op spookachtige wijze. Dat wil zeggen: als een spin-meting aan het elektron werd uitgevoerd en dit blijkt omhoog te draaien, dan zal de atoomkern omlaag draaien (bij een omgekeerd meetresultaat uiteraard andersom). We kunnen niet voorspellen wat de uitkomst van de eerste meting is maar, zodra we die weten, wel wat de uitkomst is van de tweede meting. Kwantumsystemen zijn extreem gevoelig voor verstoringen – de reden dat kwantumverstrengeling gewoonlijk slechts miljardsten van secondes duurt. Daarom is het belangrijk een groot aantal deeltjes tegelijkertijd te kunnen kwantumverstrengelen, zodat geen fouten optreden bij berekeningen in een kwantumcomputer als er een kwantumverstrengeling wordt doorbroken.

Hoe werkt een kwantumcomputer?
Een “gewone” computer werkt met bits, nullen en enen. Schakelaars kunnen alleen op nul of een staan. Eén schakelaar vormt dus één bit. Kwantumcomputers zijn fundamenteel anders. Ze werken niet met bits, maar met qubits. Een qubit neemt door de kwantumonzekerheid alle mogelijke waarden tegelijkertijd aan.

Volgens kwantumcomputer-pionier David Deutsch werken ontelbare parallelle heelallen samen in een kwantumcomputer.

Volgens kwantumcomputer-pionier David Deutsch werken ontelbare parallelle heelallen samen in een kwantumcomputer.

Je weet niet of er nul of een uitkomt als je een qubit meet, alleen de kans dat de qubit nul of een wordt (bijvoorbeeld: driekwart kans op een nul).

Interessant aan kwantumcomputers is dat hun rekensnelheid (m.a.w. informatieinhoud) met elke extra qubit niet met één eenheid toeneemt, zoals bij een klassieke computer, maar exponentieel.

U leest het goed: een kwantumcomputer met acht qubits heeft niet twee keer zoveel, maar 24 is zestien maal zoveel rekencapaciteit als eentje met vier qubits. Probleem is wel dat de levensduur van de kwantumtoestand gedeeld wordt door het kwadraat van het aantal qubits. Tien verstrengelde qubits blijven dus honderd keer zo kort in de gewenste toestand als één qubit. Al rekent een quantumcomputer heel snel, je moet er dus wel heel snel mee klaar zijn.

David Deutsch, een pionier op het gebied van quantumcomputing en ook fervent aanhanger van de veel-werelden kwantuminterpretatie, denkt dat dit komt omdat er in parallelle heelallen kopieën van de kwantumcomputer staan die allen met elkaar samenwerken om tot de uitkomst te komen. Hoe meer qubits, hoe meer parallelle heelallen “af worden getapt”.

Massa-effecten van kwantumverstrengeling.
Op dit moment is er voor zover aan schrijver dezes bekend nog nooit theoretisch werk gedaan naar de statistische interpretatie van massale kwantumverstrengeling. Stel dat alle deeltjes in voorwerp A worden verstrengeld met alle deeltjes in voorwerp B. Beide voorwerpen zitten in een sterk magnetisch veld. Stel dat voorwerp A linksom gaat draaien. Dan zou de uitkomst van metingen aan de deeltjes in voorwerp B (in de praktijk: elke koppeling van de deeltjes aan de boze buitenwereld van voorwerp B) vaststaan en… beïnvloed worden. Op deze vraag zal in een vervolgartikel ingegaan worden. Misschien dat met kwantumverstrengeling namelijk één van de allergrootste raadsels in de natuurkunde opgelost kan worden…

Bronnen
Ultrafast Quantum Computer Closer: Ten Billion Bits of Entanglement Achieved in Silicon, Science Daily
Entanglement in a solid-state spin ensemble, Nature

Share Button

Germen

Hoofdredacteur en analist (Visionair.nl) Expertise: biologische productiesystemen (master), natuurkunde (gedeeltelijek bachelor), informatica

Dit vind je misschien ook interessant:

1 reactie

  1. Barry schreef:

    Is er ook al bekend in hoeverre het magnetisch veld veranderd als massaverstrengeling plaatsvind binnen dat magnetisch veld? gaat het magnetisch veld zich dan ook verstrengelen? Wordt het magnetisch veld rond of blijven het banen van punt a naar punt b?

Geef een reactie

Het e-mailadres wordt niet gepubliceerd. Verplichte velden zijn gemarkeerd met *

Advertisment ad adsense adlogger