Wetenschap

Onbekende groep 1 bevindt zich fylogenetisch tussen bacterievirussen. Groep 2 is onbekend...

Mysterieus DNA wijst op onbekende levensvorm

Het leven op aarde bestaat uit bacteriën, de bacterieachtige archaea en eukaryoten (alle levensvormen met een celkern, waaronder mensen). Mysterieuze DNA-sporen wijzen er echter op dat er mogelijk nog een onbekende vierde groep levensvormen is…

Wetenschappers zijn net mensen. Het grootste deel van de tijd zijn ze bezig op de gebaande paden voort te rennen. Dat er weg van de wetenschappelijke snelweg nog veel opmerkelijke ontdekkingen zijn te doen bewees een groepje genetici, waaronder Jonathan Eisen van de universiteit van Californië en  Craig Venter, bekend van het Human Genome Project.

Grootste deel eencelligen onzichtbaar
Maar één op de honderd bacteriesoorten kan worden gekweekt op een petrischaaltje. Om de vele onbekende eencelligen in kaart te brengen, hebben beide genetici enkele monsters van de Global Ocean Sampling Expedition uitgekamd. Door middel van metagenomics, een techniek waarbij letterlijk alle DNA in het monster op één hoop wordt gegooid en geanalyseerd,  slaagden ze erin junk-DNA van relevante informatie te scheiden.

Onbekend, sterk afwijkend DNA
Hier kwamen opmerkelijke dingen uit. Zo bleken DNA-reeksen voor te komen die codeerden voor tot nu toe totaal onbekende varianten van recA and rpoB, eiwitten die respectievelijk DNA repareren en RNA (afschrift van DNA) produceren.

Dit is geen maanlander maar een faag: een bacterievirus.
Dit is geen maanlander maar een faag: een bacterievirus.

Deze eiwitten of varianten hiervan komen in iedere bekende levensvorm van alle drie rijken voor. De varianten die nu zijn aangetroffen zijn volkomen onbekend en passen in geen van de drie bekende rijken. Om die reden denken veel biologen dat we een onbekende vierde groep levensvormen op het spoor zijn, verschillend dus van bacteriën, archaea en organismen met een celkern.

Verklaringen
Sommigen denken dat deze sequenties van een organisme komt dat zich door langdurige isolatie uit een groep bacteriën of archaea heeft ontwikkeld.

Onbekende groep 1 bevindt zich fylogenetisch tussen bacterievirussen. Groep 2 is onbekend...
Onbekende groep 1 bevindt zich fylogenetisch tussen bacterievirussen. Groep 2 is onbekend...

Dan moet deze scheiding wel miljarden jaren geleden hebben plaatsgevonden of moet de evolutie extreem snel hebben plaatsgevonden.

Anderen denken dat het om een nog onbekende groep fagen (bacterievirussen) gaat. Sommige virussen dragen de codes voor DNA-manipulerende enzymen met zich mee.

Inderdaad zijn de onbekende sequenties uit groep 1 (zie figuur, geel) verwant aan fagen. Groep 2, in blauw gemarkeerd,  is veel raadselachtiger.

De meest verregaande suggesties is dat het hier om een nog onbekend organisme  gaat dat misschien de missing link is tussen cellulair leven en niet-cellulair leven. Dat laatste zou uiteraard zeer sensationeel zijn.

Het is ook mogelijk dat het (net zoals eerder bij archaea) in het geval van groep 2 om bacterie-achtige organismen  gaat die tot nu toe aan de aandacht van microbiologen zijn ontsnapt.

Bronnen:

New Scientist
Plos One

Altijd al willen weten wat er met de aarde gebeurt als je die twee keer zo groot maakt?

Maak je eigen planeet

Hoe zou de aarde er uit zien als de zon een rode dwerg is? Zou Mars leefbaar worden als de planeet een stuk groter is dan nu? NASA heeft  een online applicatie ontwikkeld om je eigen exoplaneet te ontwerpen. Vanaf gloeiend hete Jupiter tot bevroren ijsdwerg, je droomwereld is door wat sliders te verschuiven samen te stellen. Dat niet alleen, het resultaat is te downloaden.

Altijd al willen weten wat er met de aarde gebeurt als je die twee keer zo groot maakt?
Altijd al willen weten wat er met de aarde gebeurt als je die twee keer zo groot maakt?

NASA Extreme Planet Makeover

Panoramafoto van de Melkweg. Hier verschuilt zich de enorme 'Australische kosmische dipool'.

Scheuren in Einsteins algemene relativiteitstheorie?

Australische astronomen hebben definitief aangetoond dat tien miljard jaar geleden een fundamentele natuurconstante, de fijnstructuurconstante alfa, anders was ten noorden van de galactische equator dan ten zuiden hiervan. Een probleem: dat kan helemaal niet volgens Einsteins algemene relativiteitstheorie…

Wat is de fijnstructuurconstante?
De fijnstructuurconstante, alfa, geeft de sterkte aan van de elektromagnetische kracht ten opzichte van twee andere natuurconstanten, de lichtsnelheid (c) en de constante van Planck (h), die fundamenteel is in de kwantummechanica. In formulevorm: [latex]\alpha = \frac{k_\mathrm{e} e^2}{\hbar c}[/latex]. Alfa is ongeveer gelijk aan 1/137. Het is een dimensieloos getal, dus zonder eenheden er achter. Daarom wordt alfa gezien als fundamenteler dan andere natuurconstantes.

Volgens de algemene relativiteitstheorie zijn de natuurwetten overal gelijk, waar je ook bent en hoe snel je ook beweegt. Dat geldt dus ook voor fundamentele natuurconstanten als alfa, die in die natuurwetten gebruikt worden. Met andere woorden: als er veranderingen in deze verhouding worden gemeten, moeten de natuurwetten anders zijn op die andere plaats en gaat Einsteins relativiteitsprincipe niet overal op. De fijnstructuurconstante is te meten door te kijken naar het gedrag van licht. De golflengte van licht wordt namelijk bepaald door de energie, c en h. Lichtdeeltjes worden uitgezonden door de elektrisch geladen elektronen als ze in een andere ‘baan’ springen. Hoeveel energie dat kost, hangt af van hoe sterk de elektronen en de atoomkern elkaar aantrekken. Verandert er iets in de verhouding tussen de kracht die op elektronen werkt en de lichtsnelheid of de constante van Planck, dan merk je dat meteen aan het licht dat elektronen in bijvoorbeeld waterstofatomen uitzenden.

Wrede schok
Het nieuws uit Australië vervulde natuurkundigen en kosmologen met ongeloof. Alfa is misschien wel de meest onaantastbare natuurconstante, bekend tot op dertien decimalen precies.

Panoramafoto van de Melkweg. Hier verschuilt zich de enorme 'Australische kosmische dipool'.
Panoramafoto van de Melkweg. Hier verschuilt zich de enorme 'Australische kosmische dipool'.

Toch bleek alfa bij enkele verre quasars een honderdduizendste kleiner te zijn dan normaal. Naar goed wetenschappelijk gebruik werden de brengers van het slechte nieuws, John Webb, Victor Flambaum en hun collega’s van de Australische universiteit van New South Wales, in 1998 aanvankelijk aan de schandpaal genageld (1). Nu blijkt uit nieuwe metingen van Webb en de zijnen aan verre quasars, dat ook aan de andere kant van de hemel alfa een honderdduizendste afwijkt, deze keer groter dan hier op aarde. We lijken hier op aarde in het midden van deze twee waarden te liggen, iets dat sommige onderzoekers al heeft doen speculeren dat de Melkweg en onze buurstelsels om die reden uniek geschikt zijn voor leven.

Er kunnen verschillende redenen zijn voor deze variatie. Sommigen denken dat deze het bestaan van extra dimensies aantoont. Andere onderzoekers plaatsen vraagtekens bij de accuratesse van de metingen. Zo is weliswaar het effect statistisch significant, er is ongeveer 1:15 000 kans dat de resultaten van Webb op toeval berusten, maar er blijkt een behoorlijke correlatie te zijn tussen de uitkomsten van metingen en het instrument dat gebruikt is, stelt collega Orzel.

Is niet alleen de ruimtelijke locatie, maar ook de tijd waarin we nu leven, uniek geschikt voor leven?
Er kunnen ook in het verleden verandering op zijn getreden in alfa. Als dit zo is, dan moeten kernreacties anders zijn verlopen dan nu. Twee miljard jaar geleden was er op aarde een natuurlijke kernreactor actief op de plaats waar nu de Gabonese plaats Oklo ligt. Als de splijtingsproducten in een andere verhouding voorkomen dan verwacht wordt bij de tegenwoordige alfa, bewijst dat dat alfa afweek in het verleden (2).

Bronnen
1. Arxiv.org (Evidence for spatial variation of the fine structure constant)
2. Arxiv.org (Manifestations of a spatial variation of fundamental constants on atomic clocks, Oklo, meteorites, and cosmological phenomena)
3. physicsworld.com, Changes spotted in fundamental constant

Leven we in de projectie van een platte wereld?

Boodschap uit Platland ontvangen?

Volgens sommige natuurkundigen leven we in een heelal met minder dan drie dimensies. Het feit dat we toch drie ruimtelijke en één tijdsdimensie waarnemen, komt volgens hen door het effect van een grotere schaal en lage energie.

Minkowski-metriek
Er zijn theorieën, zoals de diverse incarnaties van de snaartheorie, die aannemen dat we in een elf- of nog meer-dimensionale braanwereld leven. Volgens Einsteins algemene relativiteitstheorie leven we in een vierdimensionale ruimte, bestaande uit drie ruimtedimensies en één tijddimensie. In de wiskundige beschrijving van ruimtetijd volgens Einstein, de Minkovski-ruimte, worden de drie ruimtedimensies als positieve getallen (enen) weergegeven en de tijddimensie als een negatief getal. Dat beschrijft het bekende relativistische effect, dat de tijd langzamer lijkt te gaan voor waarnemers die versnellen en daarna weer afremmen.
Er komt echter steeds meer experimenteel bewijs dat in ieder geval bij zeer hoge energieën, dit niet meer opgaat en we het met één, of misschien zelfs wel twee dimensies minder moeten doen…

Warme, tweedimensionale zwarte gaten
De eerste scheuren in ons vierdimensionale wereldbeeld ontstonden door theoretisch werk aan  zwarte gaten. Het principe van een zwart gat is simpel. Volgens Einsteins algemene relativiteitstheorie kan niets sneller bewegen dan het licht. Hoe zwaarder iets is, hoe hoger de ontsnappingssnelheid – je kan bijvoorbeeld van een zwevend rotsblok van een kubieke kilometer al ontsnappen door een flinke sprong te nemen. Op aarde moet je dan meer dan elf kilometer per seconde reizen, vijf keer sneller dan een kogel. Sommige objecten – ingestorte sterren zwaarder dan vijf keer de zon, bijvoorbeeld – zijn zo zwaar en dicht dat zelfs een voorwerp dat met de lichtsnelheid beweegt, zoals een lichtdeeltje, niet meer kan ontsnappen. Er ontstaat dan iets dat alles, zelfs licht, opslokt: een zwart gat.

Theoretisch natuurkundigen gingen stoeien met de wiskundige beschrijving van ruimte-tijd rond een zwart gat, waar onder meer de Schwarzschild-radius uit is afgeleid. En kwamen met opmerkelijke uitkomsten, toen ze deze met kwantummechanica gingen combineren. Zo ontdekte mediaberoemdheid Stephen Hawking dat zwarte gaten Hawkingstraling uitzenden, omdat als in het vacuüm virtuele deeltjes worden opgeslokt door het zwarte gat, het andere deeltje daardoor positieve energie krijgt en zo kan ontsnappen. Met andere woorden: zwarte gaten hebben een temperatuur! Nu is er een ijzeren thermodynamische wet in de natuurkunde: alles wat temperatuur heeft, heeft entropie, dus een informatieinhoud. Jacob Bekenstein berekende dat de hoeveelheid entropie van een zwart gat afhangt van… de oppervlakte van de waarnemingshorizon. Elke bit informatie komt overeen met [latex]\hbar G/c^3[/latex], de oppervlakte van Planck. Zowel [latex]\hbar[/latex] als G zijn erg klein en de lichtsnelheid c is heel erg groot, waardoor hier een absurd kleine waarde uit rolt: 2,6 * 10-70 vierkante meter (zeventig nullen achter de komma dus) per kwantumbit. De waarnemingshorizon van een zwart gat is ideaal om je illegale downloads op te dumpen, dus. Ook interessant is dat volgens de algemene relativiteitstheorie de diameter van een zwart gat evenredig is aan zijn massa: elke zonsmassa extra betekent dat het gat zes kilometer doorsnede er bij krijgt. Is massa informatie, dus entropie? En komt informatieinhoud overeen met oppervlak? Dit is wat het combineren van de algemene relativiteitstheorie met kwantummechanica lijkt te impliceren…

Leven we in een plat vlak?
Waarnemingen aan extreem krachtige kosmische straling (het krachtigste kosmische deeltje ooit waargenomen had evenveel punch als een weggemepte honkbal, let wel, één enkel deeltje) tonen aan dat de ruimte voor deze deeltjes er heel anders uitziet dan voor ons. Erg plat, namelijk.

Leven we in de projectie van een platte wereld?
Leven we in de projectie van een platte wereld?

Dit komt uitstekend overeen met theorieën waarin het heelal vlak na de Big Bang, toen het veel heter was dan nu (de deeltjes hadden in die tijd een energie van boven de 100 biljoen elektron-volt of eV), maar één ruimte- en een tijdsdimensie heeft. Een lijn die door de tijd beweegt, dus. Iets later, de energie per deeltje daalde tot 1 biljoen eV, zou zich een tweede dimensie hebben gevormd, waaronder ons bekende heelal met drie dimensies zou zijn ontstaan. Nu heeft de achtergrondstraling een temperatuur van drie kelvin, dit is een duizendste eV. Misschien dat ons heelal als het heel sterk af is gekoeld, nog veel meer dimensies zal tellen. Mureika en Stojkovic veronderstellen dat bij zeer lage temperaturen mogelijk het vacuüm uit elkaar zal vallen in vier ruimtedimensies en een tijdsdimensie.

Boodschappers van Platland?
De statistische verdeling van de energie van kosmische deeltjes toont aan dat ze uit een ruimte komen, die meer weg heeft van een plat vlak dan van onze driedimensionale ruimte.  In hun nieuwe studie bedachten natuurkundigen Jonas Mureika en Dejan Stojkovic een nieuwe methode om uit te vinden of deze waarneming inderdaad klopt en bij zeer hoge deeltjesenergieën de ruimte inderdaad plat wordt. Deze methode gaat er vanuit dat in een tweedimensionaal, plat heelal de ruimte geen mogelijkheden voor zwaartekrachtswerking heeft, dus ook geen zwaartekrachtsgolven voorkomen. Als de gevoelige zwaartekrachtsdetectoren die nu gepland worden merken dat zwaartekrachtsgolven voorbij een bepaalde frequentiegrens niet meer voorkomen, zou dat een concreet bewijs zijn voor een tweedimensionale voorloper van ons heelal.

Eendimensionale wereld in de LHC?
In sommige varianten van de theorie worden al sporen zichtbaar van de eendimensionale wereld boven tien biljoen eV, wat binnen bereik ligt van de Large Hadron Collider. Beide onderzoekers denken dat het daarom mogelijk kan zijn in botsingen sporen te ontdekken van de wereld vlak na de Big Bang.

Bronnen
Physorg
Physical Review Letters
Arxiv

Vooral de Angelsaksische wereld en West-Europa scoren goed op de geografische citatie-index.

De steden met het beste wetenschappelijke onderzoeksklimaat

Publish or perish. De citatieindex is zowel gevreesd als gerespecteerd onder wetenschappers en de managers die over de schaarse onderzoekscentjes gaan zijn dol op deze statistieken. Geen wonder dat wetenschappers zich suf publiceren om het aantal keren dat ze geciteerd worden, op te krikken. Tot nu toe…

Hoe werkt de citatieindex?
Om hun artikel te onderbouwen halen wetenschappers doorgaans andere artikelen aan. Het aantal citaten varieert van enkele tot honderden. De citatieindex meet hoe vaak artikelen van een bepaalde wetenschapper worden geciteerd. De gedachte hierachter is dat een belangrijk artikel vaak als onderbouwing voor andere artikelen wordt aangehaald. Een wetenschapper met een hoge citatieindex wordt blijkbaar door zijn of haar collega’s erg relevant gevonden. Zij speelt vaak een leidende rol in zijn vakgebied, wat betekent dat ze (doorgaans) relevant onderzoek doet. Het is dus op het eerste gezicht slim om wetenschappers met een hoge citatieindex veel onderzoeksgeld te geven. Voor beleidsmakers, die doorgaans maar weinig afweten van het vakgebied waar ze beslissingen over moeten nemen, is de citatieindex een mooi neutraal middel om talentvolle onderzoekers er uit te pikken en binnen te leiden in het onderzoekswalhalla van overvloedige fondsen om dure onderzoeksapparatuur en bereidwillige aio’s te werven.

Hoe is de citatieindex te spammen?
Wetenschappers zijn doorgaans slimme mensen, dus hebben deze uiteraard al snel allerlei manieren uitgedokterd om flink vaak geciteerd te worden en zo onderzoeksgelden (of een gewild baantje als hoogleraar of onderzoeksleider)  in de wacht te kunnen slepen. Een voor de hand liggend middel is onderling af te spreken elkaar zo vaak mogelijk te citeren. Dit gebeurt dan ook vaak. Een andere simpele techniek is een artikel in een groot aantal kleinere artikelen te splitsen. Het is bijvoorbeeld absoluut dodelijk je tijd te stoppen in het schrijven van een gezaghebbende pil van duizend pagina’s over je vakgebied. Alleen een studentje haalt die aan in zijn afstudeerscriptie. Een vernuftige wetenschapper publiceert van die stof zeker twintig artikelen. Wat ook geweldig goed werkt is uit hetzelfde onderzoek (vooral praktijkonderzoek kost heel veel tijd en schaarse apparatuur) meerdere artikelen persen.

Het artikel moet natuurlijk wel vindbaar zijn. Vooral voor tijdschriften met een kleinere oplage zijn de kosten om een artikel op te vragen extreem hoog. Niet voor niets zijn de wetenschappelijke publicaties een goudmijn voor uitgeversgiganten als Elsevier. Post dus een pre-print exemplaar van je artikel op een site als Arxiv. Dat maakt het een stuk makkelijker om je onderzoek te laten citeren. Hier bewijst een wetenschapper collega-wetenschappers en de rest van de wereld overigens ook een grote dienst mee (in tegenstelling met andere vormen van citatieindex-spam). Op sites als Google Scholar duiken sommige artikelen vaker op dan andere. Het kan de moeite lonen je artikel hierop de optimaliseren.

Ook doen publicaties in vooraanstaande wetenschappelijke tijdschriften het uiteraard goed. Uit andere onderzoeken is gebleken dat exact hetzelfde artikel geweigerd werd als het afkomstig was van een obscuur instituut, maar geplaatst werd als er een wetenschappelijke topper van een topinstituut werd aangehaald. Kortom: wat vriendjespolitiek en flink slijmen bij dé goeroe van je vakgebied om hem als medeauteur te strikken helpt.

Steden vergeleken
Gezien de relatieve onbetrouwbaarheid van de citatieindex hebben de onderzoekers Lutz Bornmann van de Max Planck vereniging in München and Loet Leydesdorff van de Universiteit van Amsterdam nu een nieuw systeem ontwikkeld, waarin kwaliteit wordt beloond.

Vooral de Angelsaksische wereld en West-Europa scoren goed op de geografische citatie-index.
Vooral de Angelsaksische wereld en West-Europa scoren goed op de geografische citatie-index.

In deze index wordt het totaal aantal citaten van de tien procent meest geciteerde publicaties gedeeld door het totaal aantal publicaties. Een artikelmatige veelpleger loopt dus tegen de lamp, want zijn of haar gemiddelde zakt. De auteur van de lijvige monografie scoort nu juist aanmerkelijk beter. De on derzoekers keken niet naar individuele wetenschappers, maar naar de stad waar de publicaties zijn verricht. Leuk is dat de onderzoekers hun werk op Google Maps hebben geplaatst voor drie wetenschapsgebieden: natuurkunde, scheikunde en psychologie. De teneur is onontkoombaar: de VS en  Europa scoren het hoogst, terwijl de vele publicaties van Spaanstalige, Oost-Europese en Russische wetenschappers door hun collegae uit de rest van de wereld worden genegeerd.

Het is natuurlijk wel de vraag wat dit zegt. Mogelijk worden wetenschappelijke bladen in andere talen dan het Engels veel minder gelezen. Tegenwoordig worden er meestal wel samenvattingen, “abstracts” in het Engels gepubliceerd, maar de gemiddelde onderzoeker heeft uiteraard weinig trek om de body van een interessant artikel uit, zeg, het Koreaans te laten vertalen. Al eerder bleek dat revolutionaire ontdekkingen van Sovjetwetenschappers, denk aan autokatalytische reacties, om die reden onbekend waren in het westen.

Bronnen
Arxivblog
Arxiv.org

Quasisterren zagen er ongeveer zo uit als de zon, maar dan heel veel groter en zwaarder.

“Quasisterren vormden eerste zwarte gaten”

In het vroege heelal bestonden er volgens bepaalde theorieën geen sterren, maar enorme sterachtige objecten, “quasi-sterren”. Quasisterren wekken hun energie niet op door kernfusie, maar vermoedelijk door iets anders. Astrofysicus Warrick Ball van Cambridge bevestigde een eerdere berekening van collega Mitchell Begelman van de universiteit van Colorado in Boulder. Beide denken nu op grond van computerberekeningen dat de energiebron van quasisterren uit kleine zwarte gaten bestond, die in de loop van miljoenen jaren uitgroeiden tot monsters van duizenden zonsmassa’s.

Quasisterren: onmogelijk?
Quasisterren waren (als ze bestonden) enorme bolvormige objecten van duizenden zonsmassa’s. Eigenlijk kan dat niet. De grootste stabiele ster denkbaar is een Wolf-Rayet ster van ongeveer honderdtwintig zonsmassa’s aan gas. Het meeste gas wordt weggeblazen door de zeer hoge stralingsdruk. Het restant brandt in maar enkele miljoenen jaren op (een duizendste van de levensduur van de zon). Zwaardere sterren-in-wording overschrijden de Eddingtonlimiet en exploderen vrijwel meteen als een pair-instability supernova, omdat zware atoomkernen plotseling gaan fuseren, de extreem krachtige gammastraling in de kern die dan ontstaat wordt omgezet in paren elektronen en positronen: antimaterie. Als gevolg valt de stralingsdruk wegvalt en volgt er door de enorme zwaartekracht een catastrofale ineenstorting.

Metaalarm
De reden dat quasisterren toch konden bestaan, is dat in het vroege bestaan van het heelal maar vier chemische elementen voorkwamen: 75 massaprocent waterstof, de rest helium en minieme spoortjes lithium (vrijwel alle lithium hier op aarde, dus ook in de accu van laptops, is afkomstig van de Big Bang) en beryllium.

Quasisterren zagen er ongeveer zo uit als de zon, maar dan heel veel groter en zwaarder.
Quasisterren zagen er ongeveer zo uit als de zon, maar dan heel veel groter en zwaarder.

Met andere woorden: de eerste metaalarme (astronomen noemen alles zwaarder dan helium een metaal) populatie-III sterren bestonden vrijwel geheel uit waterstof en helium, waardoor ze veel groter konden worden dan tegenwoordige sterren zonder direct te exploderen: er was alleen de vloeiende curve van de waterstof- en heliumfusie waardoor in een heel groot gebied kernfusie plaatsvond en zich door de stralingsdruk geen zware exploderende kern kon vormen.

Volgens de quasister-theorie werd op een gegeven moment de kern van de samentrekkende gaswolk toch zo zwaar en dicht dat deze de Chandrasekharlimiet overschreed en zich een zwart gat vormde.

Zwart gat verhit ster
Zwarte gaten doen hun naam (voor zowel onze berekeningen uitwijzen) niet bepaald eer aan. Materie die in een zwart gat valt, wordt zeer heet en valt daarom uiteen in geladen deeltjes. Geladen deeltjes die rondtollen (in dit geval: om het zwarte gat) zenden straling uit : de reden dat objecten als Cygnus X-1, de meest waarschijnlijke kandidaat voor een zwart gat, enorm sterke röntgenbronnen zijn. Dit zwarte gat verhit met deze straling het gas in het centrum, waardoor dit uit gaat zetten. Volgens berekeningen van het team astronomen is het gevolg, dat de gasbol er van buiten uit zie als een uit de kluiten gewassen ster, zo groot dat ons complete zonnestelsel plus Kuipergordel er in zou passen,  met een kleur van die van de zon van rond de duizend zonsmassa’s. Hoe groter het zwarte gat, hoe vraatzuchtiger en hoe meer energie er vrij komt. Op een gegeven moment wordt de omgeving rond het zwarte gat zo heet, dat de gasschil weg wordt geblazen en het zwarte gat zelf zichtbaar wordt. Volgens de berekening van de onderzoekers gebeurt dit na ongeveer een miljoen jaar.

Dwergstelsels
Met dit mechanisme denken ze te kunnen verklaren hoe de superzware zwarte gaten in het centrum van de eerste melkwegstelsels zich vormden. Deze trokken vervolgens de materie in de buurt aan en concentreerden deze tot de eerste melkwegstelsels. Deze oermelkwegstelsels waren overigens veel kleiner dan onze Melkweg: het ging hier om dwergstelsels zoals de Magelhaense Wolken en Omega Centauri die zich in de loop van miljarden jaren samenvoegden tot de imposante melkwegstelsels van nu. Ook de zwarte gaten slokten elkaar op tot de monsters van miljarden zonsmassa’s van nu.

Bronnen
New Scientist
Arxiv.org (Begelman, Rossi en Armitage)
Arxiv.org (Ball, Tout, Zytkov en Eldridge)

Een witte dwerg (midden) is veel kleiner dan de zon (rechts) maar veel heter.

‘Uitgebrande ster vormt kraamkamer leven’

Op het eerste gezicht lijken de zonnestelsels van witte dwergen, de witgloeiende resten van zonachtige sterren, niet bepaald de meest geschikte plaats om een aardachtige planeet te herbergen. Echter, schijn bedriegt, zegt astronoom Eric Agol.

Wat zijn witte dwergen?
Gedurende hun lange leven smelten sterren als de zon hun waterstof geleidelijk om tot helium, waarbij gigantische hoeveelheden energie vrijkomen: per gram waterstof voldoende voor ongeveer een eeuw elektriciteitsgebruik van een klein gezin.

Een witte dwerg (midden) is veel kleiner dan de zon (rechts) maar veel heter.
Een witte dwerg (midden) is veel kleiner dan de zon (rechts) maar veel heter.

Na enkele miljarden jaren (bij de zon: nog vijf miljard jaar, dus sluit je nog niet aan bij een doomsday sekte) is de waterstof op en vormt zich een enorme rode reus (stel je voor: de zon die de aarde opslokt), die na miljoenen jaren door een grote explosie zijn roodgloeiende mantel afstoot.

Deze vormt een vaak spectaculaire planetaire nevel, terwijl de witgloeiende kern achterblijft.

De materie in deze kern is extreem dicht en wordt elektronenvloeistof genoemd, omdat door de enorme zwaartekracht atomen niet meer bestaan en atoomkernen en elektronen door elkaar zwerven. Een theelepeltje elektronenvloeistof heeft een massa van duizend kilogram: witte dwergen zijn ongeveer zo groot als de aarde maar bevatten de massa van een ster. Ze zijn zeer heet: tienduizenden graden, maar kennen in verhouding tot hun massa een heel klein oppervlak, waardoor ze in verhouding toch weinig energie uitstralen.

De rode-reusfase met daarna de grote explosie die de stermantel wegblaast, laat voorzover we weten weinig heel van planetenstelsels. Planeten dicht bij de ster worden door de rode reus opgeslokt of drooggekookt. Planeten die dit overleven, krijgen door de  eindexplosie een stevige dreun. Kortom: niet bepaald een prettige omgeving voor leven.

De bewoonbare zone van een witte dwerg is heel klein, maar blijft wel miljarden jaren behaaglijk.
De bewoonbare zone van een witte dwerg is heel klein, maar blijft wel miljarden jaren behaaglijk.

Echter: zodra de witte dwerg zich eenmaal heeft gevormd,ontstaat een stabiele zone waarin leven zich kan ontwikkelen en die volgens berekeningen van astronoom Eric Agol van de universiteit van Washington,ongeveer drie miljard jaar in staat blijft om leven te onderhouden.

Het gaat om planeten die zeer dicht bij hun ster staan: 0,3 tot 1,5 miljoen kilometer, een honderdste AE (een AE is de afstand aarde-zon) of één tot vier keer de afstand aarde-maan.

Door de enorme getijdekrachten verliest een dergelijke planeet al snel zijn draaiing en kent hij een eeuwige dag, waarbij de zon altijd op dezelfde plaats van de hemel staat. De nachtzijde zal bedekt zijn met dikke lagen ijs. Een jaar zou een dag of zelfs maar enkele uren duren.

Astronomen op deze wereld zouden dus de bittere koude van de nachtzijde moeten trotseren en goede volgkijkers moeten bouwen.

De planeet zou volgens berekeningen van Agol ongeveer drie miljard jaar bewoonbaar blijven. Het leven op aarde is veel sneller ontstaan, dus in principe zou een dergelijke planeet leven moeten kunnen ontwikkelen. Naarmate de witte dwerg afkoelt, zal de planeet langzamerhand  bevriezen.

Agol denkt dat planeten rond een witte dwerg redelijk eenvoudig te vinden zijn, omdat witte dwergen zo groot zijn als een aardachtige planeet en dus een bedekking door een planeet de lichtintensiteit snel zal laten verminderen. Wel vereist het bestaan van een planeet zo dicht bij het hart van een voormalige ster (om een indruk te geven: als de aarde op die afstand van de zon zou staan, zou de zon een kwart van de hemel in beslag nemen) de migratie van een ver weg staande planeet die de rode-reus fase overleefd heeft.

Een uiterst zeldzame gebeurtenis, astrofysisch gesproken, maar niet onmogelijk. In ons eigen zonnestelsel verklaart het migreren van planeten volgens sommigen de merkwaardige rotatie van ijsreus Uranus.

Bronnen
ArXiv Blog
ArXiv

Tijdreizen. Zal het ooit lukken? Volgens twee snaartheoretici doen we het al...

‘LHC is eerste tijdmachine’

Toegegeven: je moet er voor in de snaartheorie en Higgsdeeltjs geloven, maar de theorie van fysici Tom Weiler en Choi Man Ho is, als deze klopt, baanbrekend: de enorme versneller LHC zou de eerste tijdmachine ter wereld zijn. Voor steriele neutrino’s, althans.

Treurig snarenspel
Het gaat niet echt goed met de snaartheorie. Ooit bejubeld als de theorie van alles, heeft de theorie in de veertig jaar dat deze bestaat, een indrukwekkende brij aan wiskundige formules opgeleverd, maar weinig concrete, toetsbare resultaten. Ook met het vinden van het Higgsdeeltje, met de bombastische bijnaam The God Particle, wil het niet vlotten. Zelfs het gecombineerde geweld van het Tevatron en de Large Hadron Collider, de twee grootste versnellers ter wereld, heeft nog geen levensteken van het Higgsdeeltje opgeleverd.

Tijdreizen
De theorieën uit het snaarkamp blijven niettemin nog steeds even woest.

Tijdreizen. Zal het ooit lukken? Volgens twee snaartheoretici doen we het al...
Tijdreizen. Zal het ooit lukken? Volgens twee snaartheoretici doen we het al...

Het nieuwste bedenksel, uit de koker van neutrino-onderzoekers en snaartheoretici Tom Weiler en Chiu Man Ho, is, moet eerlijk toegegeven worden, spectaculair en visionair wat betreft de reikwijdte. Een groot deel van de tijd is de LHC bezig protonen zo hard tegen elkaar te beuken dat er biljoenen elektronvolt aan energie vrijkomt. Dat levert een ware regen aan deeltjes op, waartussen, hopen de LHC-experimentatoren, het langverwachte Higgsdeeltje zit (volgens de laatste schattingen moet de massa van het Higgsdeeltje rond de 0,1-0,2 TeV liggen, dat is een paar procent van wat de LHC maximaal aan energie op kan wekken). Het Higgsdeeltje kan verklaren waarom deeltjes massa hebben, vinden de Higgs-gelovigen, doordat het zou kleven aan alle deeltjes waarvan de massa is gemeten.

Je grootvader vermoorden kan niet, een boodschap sturen wel
Volgens sommige varianten van de snaartheorie komt er bij de botsingen zoals in het LHC, naast het hypothetische Higgsdeeltje, ook een Higgs singlet vrij. Volgens Weiler en Ho kunnen deze singlets zowel terug als vooruit in de tijd reizen via een vijfde dimensie. Het Higgs singlet zou alleen op de zwaartekracht reageren. Daarom is het onmogelijk om met dit Higgsdeeltje terug te reizen in de tijd en, bijvoorbeeld, je grootvader te vermoorden (of een overleden popster, als je je doodergert aan zijn muziek), stelt Weiler. Wel kunnen volgens hem wetenschappers boodschappen naar het verleden sturen (wat uiteraard ook moordinstructies op je grootvader kunnen zijn. Foutje, bedankt).

Neutrino’s sneller dan het licht
Weiler begon zich in tijdreizende deeltjes te verdiepen toen hij op bepaalde neutrino-anomalieën stuitte. Hij kon die, stelt hij, verklaren door aan te nemen dat er steriele neutrino’s door een extra vijfde dimensie sneller dan het licht bewogen. Als je je referentieframes slim kiest, betekent sneller dan het licht reizen in bepaalde gevallen: terug in de tijd reizen.  Neutrino’s zijn als uiterst ongrijpbaar sowieso al berucht onder experimentatoren: neutrinotelescopen zijn extreem grote bassins waar uiterst gevoelige detectoren signalen in proberen te vinden. Steriele neutrino’s zijn hypothetische neutrino’s die alleen door hun zwaartekrachtsinvloed te detecteren zijn. Kortom: het zou nog wel eens heel lang kunnen duren voor de mooie theoretische bedenksels van beide heren dor middel van een experiment kunnen worden getoetst…

Bronnen
Science Daily
Arxiv.org

Hotta's gedachtenexperiment voor kwantumtransport van energie.

“Zwaartekracht is gevolg van kwantumverstrengeling”

Zwaartekracht is extreem zwak, werkt op alles in en vertraagt de tijd. Er is maar één invloed in de hedendaagse natuurkunde bekend die al deze eigenschappen in zich verenigt: kwantumverstrengeling. Hieronder zal uiteengezet worden wat kwantumverstrengeling is en hoe het in staat is ruimtetijd te vervormen.

Eisen aan kandidaat-zwaartekrachtstheorieën
Hetgene wat zwaartekracht veroorzaakt, moet op alle fysische objecten inwerken, alsmede op de lege ruimte zelf. Het moet de tijd vertragen en de ruimte doen inkrimpen. Het moet een invloed op massa uitoefenen, evenredig aan trage massa. Zwaartekracht is extreem zwak, dus wat de gevolgen op ruimtetijd ook veroorzaakt, moet extreem zwak, maar wel universeel zijn en universeel invloed uitoefenen. Meer details in ons artikel Schizofrene eigenschappen van het graviton.

Kwantummechanica als allesbeheersende theorie 
Met uitzondering van de algemene relativiteitstheorie maken alle natuurkundige theorieën gebruik van de kwantummechanica. Er zijn op basisniveau drie theorieën: quantum elektrodynamica (QED) die de elektromagnetische kracht op kwantumniveau beschrijft (in essentie bestaat quantum elektrodynamica uit de vier vergelijkingen van Maxwell gecombineerd met relativistische kwantummechanica), QCD (quantum chromodynamica die de sterke kernkracht beschrijft; deze is wiskundig minder rigoreus geformuleerd dan QED) en de kwantumtheorie die de zwakke wisselwerking beschrijft (en samengevoegd is met QED tot de elektrozwakke kwantumdynamica). Al deze drie (of twee) theorieën verklaren, met de algemene relativiteitstheorie, alle waarnemingen. Aangezien de algemene relativiteitstheorie zich met objecten op macroscopische grootte bezig houdt en de kwantumdynamica met de wereld op kwantumniveau, levert dit in de praktijk nauwelijks problemen op, behalve op het gebied van zwarte gaten, theoretische, nog nooit waargenomen objecten met een ontsnappingssnelheid groter dan de lichtsnelheid.
Echter: elke poging om de algemene relativiteitstheorie samen te voegen met kwantumdynamica levert monsterlijke wiskunde op. Bekende voorbeelden hiervan zijn de snaartheorie en loop quantum gravity. Vandaar dat de hedendaagse natuurkunde ruimtetijd laat beschrijven door de algemene relativiteitstheorie en interacties tussen deeltjes en velden door de kwantummechanica in zijn twee (of drie) incarnaties.

De gevolgen van kwantumverstrengeling op ruimtetijd
Kwantumverstrengeling ontstaat als twee kwantumdeeltjes met elkaar in contact komen. Als twee deeltjes, A en B, met elkaar kwantumverstrengeld zijn, betekent dat dat als een meting aan één deeltje wordt verricht, dit een gecorreleerde eigenschap van het andere deeltje vastlegt (bijvoorbeeld: meet van één deeltje de impuls, dan ligt van het andere deeltje de plaats exact vast). Natuurkundig gezien betekent een waarneming: kwantumcorreleer een deeltje met een enorm systeem (bijvoorbeeld een object met veel massa, zoals het geheel van waarnemingsapparaat en waarnemer). Wiskundig gezien beperkt dit de vrijheidsgraden van het hele systeem: wiskundig gezien wordt de ruimte die het systeem hiermee inneemt, kleiner. Stel, een deeltje m in massief object M is kwantumverstrengeld met een deeltje n in object N. Stel, in object M vindt een kwantuminstorting van de golffunctie van m plaats waardoor de impuls van m exact bekend is ten opzichte van de rest van M, dan moet in object N de plaats van n exact bekend zijn ten opzichte van N. Door de nabijheid van M en N vinden voortdurende interacties (geïntermedieerd door virtuele of reële  deeltjes) plaats tussen M en N en ontstaat er dus voortdurend kwantumverstrengeling.

Er is tot op heden niet één waarneming gedaan die in strijd is met de kwantumelektrodynamica of de algemene relativiteitstheorie. Aangezien de wiskundige beschrijving van ruimtetijd volgens de speciale relativiteitstheorie, ook die is volgens de kwantummechanica, komt deze wiskundige ruimte dus volledig overeen met de werkelijke ruimte. Voorlopige onontkoombare conclusie: kwantumverstrengeling zorgt voor een inperking, verkleining dus, van ruimtetijd. Precies het effect waarvan de algemene relativiteitstheorie voorspelt dat massa dat heeft op de omringende ruimtetijd…

Kwantumverstrengeling met virtuele deeltjes in het vacuüm
Uit de onzekerheidsrelatie van Heisenberg volgt dat we op kwantumschaal geen absolute uitspraken kunnen doen over meetbare grootheden als energie, tijd, impuls en plaats. Dat kunnen we alleen over hun product: zo weten we dat een deeltje als een elektron (massa: 9,10938188 × 10-31 kilogram) met het bijbehorende positron (dat even zwaar is) maximaal 1,3×10-21 seconde kan bestaan (de tijd waarin licht een duizendste van de diameter van een atoom, of honderd protondiameters, aflegt). Virtuele deeltjes onderscheiden zich alleen van reële deeltjes door hun energie, die netto nul is. Dit betekent dat het effectieve bereik van alle virtuele deeltjes met massa zeer klein is. Alleen fotonen, lichtdeeltjes, hebben massa nul dus een oneindig bereik. Dit is ook nodig, want in de kwantummechanica worden elektromagnetische interacties veroorzaakt door virtuele fotonen (en, zoals bekend, een bliksem of een sterke elektromagneet heeft heel wat meer bereik dan een duizendste van een atoomkern).

Het is reeds gelukt met behulp van elektromagnetische velden deeltjes met elkaar te kwantumverstrengelen. We weten daarom (en ook uit kwantumtheoretische berekeningen en andere experimenten) dat virtuele deeltjes met reële deeltjes kwantumverstrengeld kunnen zijn. Ok weten we dat reële deeltjes die kwantumverstrengeling via virtuele deeltjes kunnen overdragen aan andere reële deeltjes. Als een reëel deeltje met een virtueel deeltje kwantumverstrengeld is, zal ook dit de vrijheidsgraden van het virtuele deeltje (in de praktijk: een virtueel foton, van de rest, virtuele neutrino’s uitgezonderd,  is het bereik immers extreem klein) inperken, dus ook hier geldt dat ruimtetijd rond massa inkrimpt. Als we aannemen dat het vacuüm bestaat uit een zee van virtuele deeltjes (en zowel waarnemingen als theorie wijzen hierop) is hiermee een mechaniek beschreven waarom massa de ruimtetijd doet inkrimpen.

Echter: omdat virtuele deeltjes massa en energie nul hebben, vindt netto invloed nul plaats van de virtuele deeltjes op reële deeltjes of virtuele deeltjes onderling. Alleen als reële materie in de buurt virtuele deeltjes laadt met energie (een veld opwekt, zou een natuurkundige zeggen) kunnen deze invloed hebben of overdragen op andere deeltjes.

De fundamentele ontdekking van Yasahiro Hotta: energieoverdracht verbruikt kwantumverstrengeling
Virtuele deeltjes zijn per definitie per saldo energieloos. In een artikel dat in februari 2010 is gepubliceerd stelt de Japanse fysicus Hotta echter vast dat er een verband is tussen energietransport en het verbruiken van kwantumverstrengeling: door het verbruiken van kwantumverstrengeling vindt energieuitwisseling plaats.

Hotta's gedachtenexperiment voor kwantumtransport van energie.
Hotta's gedachtenexperiment voor kwantumtransport van energie.

We hebben reeds eerder gezien dat kwantumverstrengeling voortdurend ontstaat, namelijk door de wisselwerking van twee deeltjes (of als een virtueel fotonenpaar dat in de rumte tussen de twee voorwerpen met twee deeltjes m en n  in twee systemen met massa M resp. N reageert). Op het moment dat de kwantumverstrengeling wordt verbroken, stelt Hotta, vindt er energieoverdracht tussen beide systemen plaats.

Je zou het niet zeggen als je er bij stilstaat dat een planeet als de aarde met vele kilometers per seconde rond de zon beweegt, maar natuurkundig gezien hebben voorwerpen in een zwaartekrachtsveld een negatieve energie. Het kost namelijk energie om het voorwerp uit het zwaartekrachtsveld los te peuteren. Het door Hotta beschreven mechanisme kan verklaren hoe de energieoverdracht bij zwaartekrachtsinteracties plaatsvindt. Het vacuüm tussen beide voorwerpen wordt door de uitwisseling van virtuele fotonen “leger” waardoor er aantrekkingskracht ontstaat. In feite is de Casimirkracht (zowel theoretisch als experimenteel aangetoond), die in een vacuüm elektrisch geleidende platen naar elkaar toetrekt, hier het gevolg van.

Massa is energie; energie is relatief; massa is dat niet. Waarom?
Dat massa equivalent is aan energie volgens de wereldberoemde formule van Einstein, energie is massa maal het kwadraat van de lichtsnelheid, weten we al sinds begin vorige eeuw. Echter: de energie van iets is relatief: afhankelijk van welk inertiaalstelsel je kiest (wat je positie als waarnemer is). Als twee waarnemers met een flinke snelheid op elkaar afvliegen en ze gebruiken hun eigen positie als uitgangspunt, hebben ze zelf een bewegingsenergie van nul en de andere waarnemer een energie van de helft van het kwadraat van zijn snelheid. Over elkaars rustmassa zijn ze het echter eens. Wat de rustmassa is van een bepaalde waarnemer, is niet afhankelijk van het referentiestelsel.

In een eerder artikel is uiteengezet hoe uit louter energie massa is te produceren, zonder magische of enge dingen te hoeven doen of een beroep te doen op virtuele deeltjes. In dit gedachtenexperiment is sprake van een grote verzameling lichtdeeltjes. In tegenstelling tot “gewoon” licht zijn deze lichtdeeltjes aan elkaar gekoppeld, in dit geval door een hypothetische massaloze bol. Wat het licht massa verschaft is hiermee de koppeling van de lichtdeeltjes aan elkaar, in dit geval door de massaloze spiegelende bol.

Wat nog ontbreekt
De wiskundige onderbouwing. Er zal moeten worden aangetoond dat uit wat Hotta heeft vastgesteld over energieuitwisseling bij kwantumverstrengeling, logisch de Einsteinvergelijkingen voor de vervorming van ruimtetijd als gevolg van massa (tensoren) rollen. Hierbij is het voorgestelde model van de wisselwerkingen tussen twee holle bollen met weerkaatsende fotonen mogelijk een interessant proefmodel. Een andere optie kan zijn de zwaartekracht tussen twee elektronen af te leiden uit alle mogelijk denkbare kwantumverstrengelingen met positieve energie tussen de deeltjes. Dit gaat de wiskunstige vermogens van schrijver dezes ver te boven, die van veel theoretisch natuurkundigen echter niet. Zou hieruit komen dat er een anomale waarde of gedrag van de zwaartekracht ontstaat, dan is hiermee aangetoond dat dit idee niet klopt. Hiermee voldoet het aan de eisen van een falsificeerbare theorie.

Eén van de miljard apparaten die GPS gebruiken.

Goedkoop boxje legt GPS totaal lam

Stel je voor: je telefoon werkt niet meer, de flappentap staat droog en je tomtom denkt dat je ergens in de Ierse Zee rondrijdt. Met een eenvoudig boxje van een paar tientjes is het GPS-systeem totaal lam te leggen. De gevolgen zijn ernstig. Tijd voor een backup voor het GPS-systeem.

GPS wordt steeds onmisbaarder
Het Global Position System of GPS maakt een stormachtige ontwikkeling door. Geen wonder. GPS werkt door een tijdsignaal uit te zenden dat gekoppeld is aan een atoomklok. Om die reden is GPS extreem nauwkeurig, zo nauwkeurig zelfs dat rekening moet worden gehouden met de relativistische tijdvertraging door het aardse zwaartekrachtsveld. Door middel van GPS is het technisch mogelijk de positie op de aarde in principe tot enkele centimeters nauwkeurig vast te stellen. Behalve in autonavigatie en dergelijke, wordt GPS gebruikt door verkeersleiders, mobieltjes, stroomnetbeheerders en banken. Elk jaar wordt onze afhankelijkheid van GPS groter. Er zijn nu al meer dan een miljard apparaten die gebruik maken van GPS.

Een totale blackout
Januari 2007, kort na twaalf uur in de Californische kuststad San Diego. Luchtverkeersleiders van het plaatselijke vliegveld merkten dat hun systeem om binnenkomende vliegtuigen te volgen, buiten werking was. In het medische centrum van de marine werkten piepers voor artsen niet meer. Ook het verkeersleidingssysteem voor schepen in de haven was uitgevallen. Op straat werkten mobieltjes niet meer en geldautomaten weigerden dienst. Totale paniek brak uit. De problemen hielden aan voor twee uur.

Eén van de miljard apparaten die GPS gebruiken.
Eén van de miljard apparaten die GPS gebruiken.

Pas na drie dagen werd de oorzaak gevonden. Twee marineschepen hadden in het kader van een trainingsoefening, alle radioverkeer verstoord. Zonder het door te hebben, bleken ze ook GPS-signalen te hebben geblokkeerd in grote delen van de stad.  GPS-signalen zijn afkomstig van satellieten hoog boven de aarde en dus erg zwak: het vermogen van de koplampen van een auto op 20 000 km afstand. Het signaal al te veel opkrikken kan niet: satellieten moeten het doen met zonnepanelen. Het vergt daarom niet veel vermogen om een GPS-signaal te verstoren.

Dit geval staat niet op zichzelf. In een marine-experiment van GPS-consultant David Last sloeg het navigatiesysteem van de Britse kruiser Galatea totaal op tilt. Toen Last zijn goedkope jammer aanzette, vloog het  vijfhonderd tonnen wegende ultramoderne marineschip, volgens het navigatiesysteem, plotseling sneller dan het geluid over Noord-Europa. Ook het gyrokompas en het radarsysteem vielen uit, want ook deze maken gebruik van GPS.

GPS: een achilleshiel
Het slechte nieuws: al voor een paar tientjes is een GPS-jammer te koop. Erg handig wanneer je wilt dat je baas er niet achter komt waar je met je vrachtwagen heenrijdt, bijvoorbeeld en daarom erg geliefd bij truckers. Wanneer ongehinderd, kan dit GPS uitschakelen in een gebied van enkele vierkante kilometers. Een kwaadwillende, crimineel of terrorist kan een complete stad lamleggen door het kastje met voldoende vermogen te activeren.  Een beetje handige electronicus kan het bereik zo flink opschroeven.

Zelfs door een goedkoop scannertje is de ravage al aanzienlijk, zo bleek op het vliegveld van Newark vlak bij New York. Sinds het nieuwe GPS-gebaseerde landingssysteem was geïnstalleerd, viel het systeem één tot twee keer per dag om raadselachtige redenen uit. Uiteindelijk kwam de politie er achter wie de boosdoener was: een trucker, honderden meters verderop op de snelweg, die een GPS-jammer in zijn vrachtwagen had geïnstalleerd om zo de tolpoortjes van de noodlijdende staat New Jersey te misleiden en onbedoeld een compleet vliegveld lamlegde.

GPS-spoofing
GPS-signalen kunnen ook vervalst worden, bewees onderzoeker Todd Humphreys van de  Universiteit van Texas in de stad Austin. Zijn spoofer kopieert een authentiek GPS-signaal en zendt het elke seconde bijvoorbeeld drie miljardste seconde later uit. Op een gegeven moment is het tijdverschil enkele seconden en kan hiermee een GPS-apparaat om de tuin worden geleid.

Met behulp van een apparaatje zoals dit legde een asociale trucker een compleet vliegveld plat.
Met behulp van een apparaatje zoals dit legde een asociale trucker een compleet vliegveld plat.

Dat is erg handig voor criminele vissers, die zo hun GPS loggingsapparatuur kunnen misleiden en ongestoord een beschermd visreservaat kunnen plunderen terwijl de loggingsapparatuur denkt dat ze zich netjes aan de voorgeschreven visgronden houden. Ook  beurshandelaars die willen handelen met voorkennis kunnen met een vervalst GPS-signaal flink verdienen. Meten ze een plotselinge piek in de koers van een aandeel, dan plaatsen ze een kooporder, zogenaamd  een paar seconden daarvoor, met behulp van een vervalst GPS-signaal en verkopen direct daarna. Humphreys schat dat het apparaat in massaproductie niet meer dan vijfhonderd dollar hoeft te kosten. Houston, we have a problem.

eLORAN-de redding?
Enhanced LORAN (eLoran) werkt net zo als GPS maar gebruikt grondgebaseerde signalen in plaats van satellieten. LORAN bestaat al tientallen jaren, werkt met een veel hoger transmisssievermogen (op de grond kan je desnoods het vermogen van een complete elektriciteitscentrale de ether in pompen, zoals in de omstreden HAARP faciliteit in Alaska gebeurt) en heeft een veel grotere golflengte. Om die reden is LORAN vrijwel onmogelijk te storen. De verbeterde versie van LORAN, eLORAN, is LORAN met betrouwbaarder zenders, gekoppeld aan een atoomklok.   De Britten zijn reeds voorbereidingen aan het treffen om eLORAN uit te rollen, maar de Amerikanen zijn hun eigen LORAN netwerk nu juist aan het opheffen. De vraag is of dat laatste zo slim is, ook omdat de besparing, twintig miljoen per jaar, niet in verhouding staat tot het enorme strategische voordeel.

Goedkope atoomklokken
Het woord zegt het al. De basis van de ultranauwkeurige atoomklok bestaat uit een enkel atoom. Hoewel atoomklokken nu nog zeer lompe dingen zijn (de reden is de ingewikkelde apparatuur die het atoom afleest), is het actieve deel van een atoomklok extreem klein. verwachten deskundigen dat straks kleine atoomklokken in apparaten ingebouwd kunnen worden. Koppel deze ingebouwde atoomklok aan een gyroscoop en een accelerometer: een apparaatje dat zeer nauwkeurig versnellingen meet, en het apparaat weet altijd precies waar het is. Je krijgt dan een IMU, inertial measuring unit en dit zou GPS voor veel toepassingen overbodig maken. IMU’s raken nu in de war bij snelheden hoger dan 1,5 kilometer per uur (wat oorlogvoering wat moeilijker maakt) en zijn logge apparaten, maar ook hier zal miniaturisatie ze handelbaar maken, verwachten waarnemers.  Tot die tijd kan het zomaar gebeuren, dat je mobiele telefoon plotseling op tilt slaat door een medeburger met psychopate trekjes.

Navigeren als de bliksem
Elk moment van de dag zijn er op aarde enkele duizenden onweersbuien actief – voornamelijk in Centraal-Afrika – waarbij het flink dondert en bliksemt. Bliksems zijn vanuit de gemiddelde militair bekeken machtig mooi. Ze geven een oogverblindende flits, een harde knal, zijn dodelijk en ze produceren zelfs gammaflitsen en antimaterie. Je kon er dus op wachten dat de Amerikaanse defensie-onderzoeksorganisatie DARPA een nuttige toepassing voor dit natuurlijke vuurwerk zou vinden.

Bliksemontladingen produceren natuurlijke radiopulsen – “sferics” met een lage frequentie en daardoor een enorm doordringend vermogen – zelfs diep onder de grond en onder water. DARPA’s S-BUG ontvangers ontvangen signalen van blikseminslagen tot duizenden kilometers ver weg. Als een ander apparaat de exacte plaats en tijd van de sferic aanlevert, kan door driehoeksmeting de precieze plaats bepaald worden. Ook prettig is dat het nog niemand ooit gelukt is een onweersbui plat te bombarderen. Dat is met radarinstallaties op de grond wel anders. S-BUG vereist slechts nieuwe software en een voortdurend contact met een zendstation dat de bliksemontladingen lokaliseert.

Bron:
New Scientist