natuurkunde

Doordat de laagjes koperoxide, de lichtblauwe laag, gingen trillen, werden ze dikker (en de isolerende laag ertussen dunner). Bron: MPG

Mijlpaal: supergeleiding bij kamertemperatuur bereikt

Voor het eerst in de geschiedenis is het onderzoekers gelukt om supergeleiding te bereiken bij kamertemperatuur, zij het voor slechts een minieme fractie van een seconde. Wanneer komt er praktische supergeleiding?

Wat is supergeleiding?
Supergeleiding werd rond de honderd jaar geleden ontdekt door de Leidse hoogleraar Kamerlingh Onnes. Hij was bezig om gassen steeds verder te koelen (de man slaagde er ook als eerste in om helium vloeibaar te krijgen). Plotseling viel alle weerstand weg en bleef de stroom oneindig lang doorcirkelen.

Supergeleiders beloven dingen als energieopslag, energiebesparing, magnetische zweefbanen, zeer krachtige magneten en daarmee: zeer sterke elektromotoren. In de meeste supergeleidende materialen ligt de kritische temperatuur op slechts enkele kelvin (de SI-temperatuureenheid kelvin staat gelijk aan de graad Celsius, alleen met 0 K = -273,15 C: het absolute nulpunt). Deze temperatuur bereiken, kan alleen met zeer logge en kostbare koelsystemen met vloeibaar helium. Eind vorige eeuw werd het keramische materiaal YBCO ontdekt, dat een veel hoger kritisch punt kent: 73 kelvin, boven het kookpunt van stikstof en dus veel makkelijker te bereiken. YBCO en vergelijkbare materialen kennen een bijzondere gelaagde structuur, waardoor zogeheten Cooperparen, paren gebonden elektronen die supergeleiding veroorzaken, minder snel uit elkaar worden gerukt.

Doordat de laagjes koperoxide, de lichtblauwe laag, gingen trillen, werden ze dikker (en de isolerende laag ertussen dunner). Bron: MPG
Doordat de laagjes koperoxide, de lichtblauwe laag, gingen trillen, werden ze dikker (en de isolerende laag ertussen dunner). Bron: MPG

Miljoensten van seconden supergeleiding bij kamertemperatuur
In 2013 ontdekte een internationaal team onder leiding van Max Planck onderzoeker Andrea Cavalleri, dat wanneer YBCO wordt bestraald met infrarode laserpulsen, het materiaal gedurende zeer korte tijd supergeleidend wordt op kamertemperatuur. Pas nu is het mechanisme achter deze ontdekkign opogehelderd met behulp van de krachtige Amerikaanse röntgenlaser LCLS. Eerst werden bepaalde atomen binnen YBCO in een hogere energietoestand gebracht door de infraroodpuls. Vervolgens mat een röntgenpuls hoe de precieze kristalstructuur van YBCO was veranderd door de infraroodpuls.

Het resultaat: niet alleen had de infraroodpuls de atomen aangeslagen, maar had ook hun positie in het kristal verschoven. Dit maakte de dubbele koperdioxidelaag dikker (met 2 picometer, een honderdste diameter van een koperatoom); de laag tussen de koperdioxidelagen werd juist dunner met dezelfde afstand.
Kwantumtunneling is extreem gevoelig voor afstandsveranderingen. Zelfs deze kleine dikteverandering van een half procent bleek genoeg om de kwantumkoppeling tussen de koperdioxidelagen zo te versterken, dat het materiaal bij kamertemperatuur supergeleidend werd voor enkele picoseconden.


Het Meissnereffect

De gevolgen
Door deze ontdekking is er een belangrijk stuk van de puzzel die supergeleiding is, ontraadseld. Supergeleiding bij kamertemperatuur komt zo een stuk dichterbij.

Bron
1. A. Cavalleri et al, Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5, Nature, 4 December 2014; doi:10.1038/nature13875
2. Superconductivity room temperature, persmed. Max Planck Institut, 2014

Video: quantum discord

Kwantumverstrengeling stelt natuurkundigen al bijna een eeuw voor raadsels, maar blijkt slechts het topje van de ijsberg te zijn. Maak kennis met het meer fundamentele begrip quantum discord, een variabele die de mate van ‘quantumness’ van een deeltje bepaalt.

Zal quantum discord eindelijk de vraag beantwoorden, welke kwantuminterpretatie klopt en ons de volle greep geven op kwantumverschijnselen?

Kunnen we van ons heelal naar een parallel universum reizen? Ja, zegt een nieuwe theorie.

‘Parallelle universums verklaren kwantummechanica’

Bekende kwantummechanische raadsels zoals de onzekerheidsrelatie kunnen opgelost worden, als parallelle werelden geïntroduceerd worden. Deze parallelle werelden, die met elkaar wisselwerken, zijn dan volstrekt klassiek en deterministisch. Dit stelt professor  Howard M. Wiseman van de Australische Griffiths Universiteit. Kunnen we naar een parallelle wereld reizen?

In een paper gepubliceerd in het prestigieuze tijdschrift Physical Review X, plaatsen professor Howard Wiseman en Dr Michael Hall van  Griffith’s Centre of Quantum Dynamics, en Dr. Dirk-Andre Deckert van de University of California, parallelle werelden uit het rijk van de science fiction en in dat van harde wetenschap.

Het team stelt voor dat parallelle universa echt bestaan, en dat ze op elkaar inwerken. Dat wil zeggen, in plaats van onafhankelijk te evolueren, beïnvloeden nabijgelegen werelden elkaar  door een subtiele kracht van afstoting. Ze tonen aan dat dergelijke interacties alles wat bizar is aan kwantummechanica kunnen verklaren.

Kunnen we van ons heelal naar een parallel universum reizen? Ja, zegt een nieuwe theorie.
Kunnen we van ons heelal naar een parallel universum reizen? Ja, zegt een nieuwe theorie.

Kwantumtheorie is nodig om uit te leggen hoe het universum werkt op de microscopische schaal, en wordt beschouwd als van toepassing op alle materie. Maar het is erg moeilijk te doorgronden, vertoont rare verschijnselen  de wetten van oorzaak en gevolg lijken te schenden.

Zoals de Amerikaanse theoretisch natuurkundige Richard Feynman zei ooit: “Ik denk dat ik gerust zeggen kan dat niemand kwantummechanica begrijpt .”

Echter, de “Veel-Interactie Werelden” benadering ontwikkeld aan Griffith University biedt een nieuwe en gedurfde visie op dit verbijsterende veld.

“Het idee van parallelle universa in de kwantummechanica is er al sinds 1957”, zegt professor Wiseman. “In de bekende Veel-werelden-interpretatie, vertakt elk universum zich  in een woud van nieuwe universa, elke keer dat een kwantummeting wordt uitgevoerd. Alle mogelijkheden worden dan ook gerealiseerd – in sommige universa miste de dinosaurusdodende asteroïde de aarde. In andere universa, werd Australië gekoloniseerd door de Portugezen.

“Maar critici twijfelen aan de realiteit van die andere universa, omdat ze ons universum niet beïnvloeden. Op dit punt is onze “Veel-Interactie Werelden” benadering totaal anders, zoals de naam al aangeeft. ”

Professor Wiseman en zijn collega’s stellen dat:

. Het universum dat we ervaren slechts een is van een gigantisch aantal werelden. Sommige zijn bijna identiek aan de onze, terwijl de meeste  zeer verschillend zijn;

. Al deze werelden even reëel zijn, continu bestaan door de tijd, en beschikken over nauwkeurig omschreven eigenschappen;

. Alle kwantumverschijnselen voortkomen uit een universele kracht van afstoting tussen ‘dichtbije’ (dat wil zeggen soortgelijke) werelden, die de neiging heeft om ze meer ongelijksoortig te maken.

Dr Hall zegt dat de “Veel-Interactie Werelden” theorie zelfs de mogelijkheid biedt, om het bestaan van andere werelden naast de onze te toetsen.

“Het mooie van onze aanpak is dat als er slechts één wereld is, onze theorie deze reduceert tot de mechanica van Newton, terwijl als er een gigantisch aantal werelden is, de theorie de kwantummechanica reproduceert,” zegt hij.

“Daar tussenin beschrijft de theorie verschijnselen, die noch Newtons theorie, noch kwantumtheorie voorspelt.”

“Wij geloven ook, dat naast het verstrekken van een nieuwe mentaal beeld van kwantumeffecten, nieuwe kwantumverschijnselen kunnen worden getest. ” Dit, tussen haakjes, maakt deze nieuwe “interpretatie” uitermate interessant. Anders dan andere interpretaties, is deze wél door experimenten te testen.

Andere toepassingsgebieden van het gebruik van een eindig aantal werelden liggen volgens de auteurs in de moleculaire dynamica, nuttig voor bijvoorbeeld het begrijpen van chemische reacties en het gedrag van medicijnen.

Professor Bill Poirier, Distinguished Professor in de chemie aan de technische universiteit van Texas, stelt: “Dit zijn goede ideeën, niet alleen conceptueel, maar ook omdat hiermee berekeningen mogelijk makkelijker worden.”

Bronnen
1. Michael J.W. Hall et al. 2014. Quantum Phenomena Modeled by Interactions between Many Classical Worlds. Physical Review X, 4, 041013; doi: 10.1103/PhysRevX.4.041013
2. New quantum theory is out of this parallel world, Griffiths University News (2014)

Als materie met strange quarks stabieler is dan normale materie, zou deze normale materie moeten opslokken. Een geliefd scenario voor doemdenkers.

Wat als ‘donkere materie’ gewoon uit standaardmaterie bestaat?

Onderzoekers denken een verklaring voor donkere materie gewonden te hebben die geen nieuwe natuurkunde vereist, slechts grote brokken materie. Hoe sterk is hun ‘case’ voor zogeheten macro’s, die net zoals normale materie gewoon uit quarks en leptonen bestaat ?

Donkere materie
Uit astronomische waarnemingen blijkt dat op er grote schaal de zwaartekracht zich niet precies gedraagt zoals de zwaartekrachtswet van Newton en de algemene relativiteitstheorie voorspellen. Zo draaien  de buitenste delen van sterrenstelsels veel sneller om de kern, dan ze op basis van klassieke zwaartekrachtstheorie zouden moeten doen. Er van uitgaande dat exotische zwaartekrachtstheorieën als MOND onzin zijn, moet iets onzichtbaars voor extra zwaartekracht zorgen. De meerderheid van de astronomen denkt dat dat ‘iets’ bestaat uit exotische deeltjes, bijvoorbeeld WIMPs of axionen, die niet in het Standaardmodel voorkomen. Helaas wil het niet echt opschieten met het ontdekken van deze spookdeeltjes. Vreemd natuurlijk, als ze verantwoordelijk zijn voor plm 80% van alle materie.

Als materie met strange quarks stabieler is dan normale materie, zou deze normale materie moeten opslokken. Een geliefd scenario voor doemdenkers.
Als materie met strange quarks stabieler is dan normale materie, zou deze normale materie moeten opslokken. Een geliefd scenario voor doemdenkers.

Donkere neutronium?
David M. Jacobs en Glenn D. Starkman, onderzoekers van de Case Western Reserve University  in de Amerikaanse deelstaat Ohio denken dat de verklaring hiervoor simpel is. De spookdeeltjes bestaan niet; de “donkere materie” is normale materie, maar opgesloten in macroscopische objecten, die we gewoon met het blote oog kunnen zien. Zij het dat ze wel een extreem hoge dichtheid hebben, in de orde van grootte van een neutronenster. Neutronium is extreem compact. Een neutroniumobject met de massa van de aarde is ongeveer zo groot als een eengezinswoning en dus van een verre afstand erg moeilijk waar te nemen. Er is alleen een probleempje met deze materie. Ongebonden neutronen vallen in gemiddeld een kwartier uit elkaar tot waterstofatomen. Neutronium is, voor zover we weten, alleen bij de extreme drukken zoals in de kern van een ineengestorte ster heersen, stabiel. Er zal dus een nog dichter, stabiel materiaal moeten worden gevonden. Sommige theoretici veronderstellen dt er zogeheten ‘strange matter’, vreemde materie, die is gegroepeerd in strangelets, moet bestaan. Strangelets zijn in feite enorme baryonen (atoomkerndeeltjes), die naast de gebruikelijke up- en downquarks, ook bestaan uit zwaardere strange quarks. Op dit moment is er geen empirisch bewijs aangetroffen voor het bestaan van strangelets. Dat is maar goed ook, want als een strangelet de aarde zou raken, zou een kettingreactie op kunnen treden, die alle materie op aarde in een strangelet verandert. De auteurs denken dan ook dat kleine strangelets niet bestaan: immers de zon schijnt nog steeds. Zij geloven in objecten tussen 1018 gram en 1023 gram. Om een indruk te geven: dat zijn objecten met een massa tussen ruwweg die van een grote asteroïde en de planeet Mars. Deze objecten zijn inderdaad zo klein dat ze optisch alleen binnen ons zonnestelsel waargenomen kunnen worden. Ook kunnen ze zo zeldzaam zijn dat ze niet vaak met normale materie botsen. Volgens de onder- en bovengrenzen die de auteurs noemen, kunnen er zich tussen de 0,1 en 1014 macro’s in de bol tussen de zon en de omloopbaan van de aarde bevinden [1].

Empirisch bewijs
De empirische bewijzen voor deze objecten blijken echter afwezig. Zware macro’s van een planeetmassa zijn uitgesloten, gezien de zeer nauwkeurige zwaartekrachtsmetingen op aarde die geen afwijkingen geven. Zeer lichte macro’s met de massa van enkele kilo’s zouden misschien kunnen bestaan. Deze zouden kleiner zijn dan een atoom. Hiervoor gelden de gebruikelijke issues met strangelets: het zijn er erg veel, dus zouden ze massaal met bestaande materie in aanraking moeten komen en deze omzetten in strangelets. Persoonlijk geef ik daarom niet veel voor deze theorie.

Bronnen
1. David M. Jacobs en Glenn D. Starkman, Macro dark matter, Arxiv prepublish server, 2014

Het prototype van de dynamak. Zou dit toestel het wereldenergieprobleem op kunnen lossen? bron: UW

‘Fusiestroom goedkoper dan steenkoolcentrale met revolutionair reactorontwerp’

Miljardenverslindende tokamaks, stellarators, Z-pinches en dergelijke, al deze monsterlijke machines wedijveren om de eerste technologie te worden die meer nuttige energie haalt uit kernfusie dan er in gestopt wordt. Kernfusie is big science, hobby-fusor enthousiastelingen daargelaten. Onzin, zeggen hoogleraar Jarboe en zijn student, ex-MIT’er Derek Sutherland van de universiteit van Washington. Met een verbluffend simpele vondst maakt hun dynomak een groot deel van een logge tokamak overbodig om een ultrasterk magneetveld op te wekken.  Gaat dit werken?

Werkcollege
Jarboe en Sutherland bleven na een werkcollege nog even verder stoeien over de stof[2] en kwamen toen op het concept van de dynomak. Nu hebben ze een prototype gebouwd dat in staat is het plasma in de plasmaring voldoende lang op de voor kernfusie vereiste miljoenen graden te houden. Volgens hun schatting[1] is de dynomak voor ongeveer van een tiende van de kosten van een vergelijkbaar grote tokamak te bouwen en levert deze vijf keer zoveel energie. De bouwkosten zouden zelfs marginaal onder die van een kolencentrale met hetzelfde vermogen liggen.

Het prototype van de dynamak. Zou dit toestel het wereldenergieprobleem op kunnen lossen?  bron: UW
Het prototype HIT-SI3van de dynomak. Zou dit toestel, tien maal groter, het wereldenergieprobleem op kunnen lossen? bron: UW

Hoe werkt de dynomak?
De dynomak is een soort spheromak. Een spheromak kent net als een tokamak, zie toelichting, een donut van zeer heet plasma. Anders dan bij een tokamak worden de elektrische stromen in een spheromak opgewekt binnen het gloeiendhete plasma. Een bekend elektromagnetisch effect is dat elektrische stromen de neiging hebben samen te trekken. Waar bij een tokamak krachtige supergekoelde magneten de plasmaring in toom houden, trekt bij de dynomak de opgewekte stroom het plasma naar binnen. Het magnetische veld hoeft niet meer extern opgewekt te worden, wat de constructie veel lichter, simpeler en dus goedkoper maakt dan een tokamak. Door de kernfusie in de plasmaring blijft deze op temperatuur en komt er warmte vrij, die weer wordt gebruikt om, net als in een gas- of kolencentrale, water te verdampen dat een turbine aandrijft.

In theorie klinkt dit mooi, maar de technische realisatie bij eerdere spheromaks was zo lastig dat tokamaks populairder werden.

Het technische probleem bij kernfusie
In theorie is kernfusie een zeer overvloedige energiebron: een  kilogram fusiebrandstof, zoals bijvoorbeeld het deuterium in zeewater, bevat evenveel energie als miljoenen liters fossiele brandstof. Kernfusie ontstaat, als twee lichte atoomkernen samensmelten om een zwaardere kern te vormen, bijvoorbeeld twee waterstof-2 kernen om een helium-4 kern te vormen. Hiervoor moeten deze kernen elkaar precies raken met de juiste energie, doorgaans enkele MeV.

Het grootste technische probleem is dat beide kernen positief geladen zijn en tot overmaat van ramp maar weinig “kleverig”. (Dat heeft te maken met het relatief kleine verschil tussen de sterkte van de sterke kernkracht en de elektromagnetische kracht). Is de snelheid ook maar iets te hoog, dan ketsen de kernen af zonder te fuseren; bij een te lage snelheid is er onvoldoende energie om de afstoting te overwinnen en ketsen ze af, waarbij de deeltjes hun moeizaam met hoogwaardige elektriciteit toegevoerde energie uitstralen als waardeloze, zelfs gevaarlijke bremsstrahlung, die uit röntgenstraling bestaat.

Tokamak als kunstzon en andere alternatieven
De dichtstbijzijnde werkende kernfusiecentrale is een grote gloeiende gasbol op zo’n slordige 150  miljoen kilometer afstand, beter bekend als de zon. De zon geeft licht, omdat in de kern van de zon de waterstof zeer heet is, rond de 14 miljoen graden en door de enorme massa van de zon ook zeer dicht opeengepakt zit, rond de 150 kilogram per liter. Hierdoor vinden er voldoende botsingen plaats voor een gestage fusie. Op aarde hebben wij uiteraard niet de apparatuur om deze drukken en temperaturen op te wekken, tenzij kortstondig in een atoombom, wat, zo kunnen de overlevenden in Hiroshima en Nagasaki u verzekeren, geen prettige ervaring is om mee te maken.

Vandaar dat uitvinders alternatieve strategieën hebben bedacht. De voornaamste zijn ten eerste de tokamak, waarbij atoomkernen met zeer hoge temperatuur (dus snelheid) opgesloten zijn in een soort magnetische donut. Relatief succesvol, de reden dat er door de  grootmachten 25 miljard euro in ITER is gestopt, maar helaas zijn om deze deeltjes op te sluiten extreem krachtige magneetvelden nodig, die alleen met reusachtige heliumgekoelde supergeleidende magneten op zijn te wekken. Superheet plasma in combinatie met materiaal op het absolute nulpunt is uiteraard een forse technische uitdaging. Een variant op de tokamak is de stellarator, een monsterlijk verwrongen tokamakachtig ding dat niet erg succesvol bleek. Een andere techniek is kortstondig fusiebrandstof samen te persen met een extreem sterke laserpuls. Gedurende een kleine fractie van een seconde overtreft de (ook miljarden kostende) Z-machine, de succesvolste Z-pinch, met een petawatt met factor 60 het elektrische vermogen van de gehele aardbol.  Er komt vele malen meer energie vrij dan er ingestopt is, zou blijken uit een dry-run simulatie. Of dit ook in de praktijk klopt moeten we, alle juichverhalen terzijde, uiteraard afwachten.

Bronnen
1. D.A. Sutherland, T.R. Jarboe, K.D. Morgan, M. Pfaff, E.S. Lavine, Y. Kamikawa, M. Hughes, P. Andrist, G. Marklin, B.A. Nelson. The dynomak: An advanced spheromak reactor concept with imposed-dynamo current drive and next-generation nuclear power technologies. Fusion Engineering and Design, 2014; 89 (4): 412 DOI: 10.1016/j.fusengdes.2014.03.072
2. UW fusion reactor concept could be cheaper than coal, Washington University News, 2014

Werkt de grootste planeet van het zonnestelsel als een zwaartekrachtslens van donkere materie? bron: NASA

‘Donkere materie veroorzaakt elfjarige zonnecyclus’

De zon kent meerdere cycli, waarvan de elfjarige zonnevlekkencyclus de belangrijkste is. Al eerder is astronomen opgevallen dat deze cyclus ongeveer in de maat loopt van de omloop van Jupiter, die enkele maanden langer, 11,8 jaar duurt. Is donkere materie de verklaring voor de cyclus? Ja, zegt een zeer speculatief artikel.

Het röntgenmysterie
De helderheid van de zon varieert in het zichtbare domein met enkele duizendsten in de loop van elf jaar. De variatie in röntgenstraling is veel groter: op sommige punten van de zonnecyclus is deze honderd maal zo sterk als op andere punten. Er moet een zeer energetisch krachtig proces zijn, dat deze geheimzinnige variatie veroorzaakt. Niemand weet wat deze variatie precies veroorzaakt, al zijn er vermoedens, zoals magnetische velden.

Jupiter als zwaartekrachtslens
Nu is een groep astronomen met een nieuwe verklaring gekomen. Volgens hen is donkere materie, die de zon treft, de verklaring voor de bizarre veranderingen. De reuzenplaneet Jupiter zou hier een cruciale rol in spelen: deze planeet, in samenwerking met de andere planeten, werkt volgens de onderzoekers als een zwaartekrachtslens, die een bundel donkere materie op de zon richt. Dit zou dan weer het periodieke gedrag veroorzaken. De sterkste asymmetrische factor buiten het zonnestelsel is uiteraard het Melkwegstelsel waar we deel van uitmaken. Een samenspel tussen Jupiter en de galactische donkere materiestromen zou dan de periodieke fluctuaties veroorzaken.

Werkt de grootste planeet van het zonnestelsel als een zwaartekrachtslens van donkere materie? bron: NASA
Werkt de grootste planeet van het zonnestelsel als een zwaartekrachtslens van donkere materie? bron: NASA

Barycentrum
Op de middelbare school heeft u geleerd dat de planeten om de zon draaien. Dit is in feite onjuist. Zon en planeten draaien om een gemeenschappelijk zwaartepunt, het barycentrum, dat in de praktijk neerkomt op een punt tussen de Zon en Jupiter dat vlak boven de ‘oppervlakte’ van de zon ligt. Een buitenaardse astronoom kan aan de schommelingen van de zon daarom zien dat de zon een zware reuzenplaneet heeft: in feite is dit een bekende manier om zware exoplaneten te vinden.

Stromen van donkere materie
In veel modellen van donkere materie bewegen de donkere materiedeeltjes vrij langzaam, rond een duizendste van de lichtsnelheid. Zwaartekrachtsvelden worden bij deze lage snelheden belangrijk. De theorie van de auteurs, dat de zon geregeld een ‘douche’ van donkere materie te verwerken krijgt, die door de planeten de richting van de zon op wordt gebogen, is daarmee op zich aannemelijk. Het kan interessant zijn om na te gaan waar deze stroom donkere materie vandaan komt: hoe staan de planeten ten opzichte van de rest van de Melkweg uitgelijnd als de zonnevlekkenactiviteit maximaal, of juist minimaal is? De auteurs raden aan om rekening te houden met deze kosmische invloeden bij het opzetten van toekomstige donkere materie detectie-experimenten. Wellicht dat we dan twee hardnekkige raadsels in een keer kunnen oplossen, en misschien in de verdere toekomst een overvloedige bron van gratis energie af kunnen tappen.

Bron
Konstantin Zioutas et al., The 11-Years Solar Cycle As The Manifestation Of The Dark Universe, ArXiv preprint server, 2013

Video: drie makkelijke en drie moeilijke manieren om door de tijd te reizen

We reizen allen door de tijd. Vooruit in de tijd reizen is niet erg moeilijk. Een kwestie van blijven leven. Maar hoe reis je achteruit in de tijd? In deze video drie makkelijke manieren en drie moeilijker manieren (zeg maar gerust: op dit moment praktisch onmogelijk, alhoewel fysisch, denken veel natuurkundigen, mogelijk) om door de tijd te reizen.

Zullen we terug kunnen reizen naar de tijd van de reuzenschorpioenen, de Neanderthaler of Jezus Christus? Ontdek het in deze video…

Video: wat is donkere materie?

Viervijfde van het universum zien we niet. Een onzichtbare wereld van donkere materie raast door ons heen zonder dat we er veel van merken. Maar wat is donkere materie? In deze korte video van een minuut leer je het grootste deel van wat we weten van dit spookachtige fenomeen. Niet erg veel dus.

Uit metingen door diverse deeltjesdetectoren in zoutmijnen of andere ondergrondse locaties zijn in 2013 en 2014 aanwijzingen opgedoken voor mysterieuze deeltjes die standaard kernreacties, en zelfs elektrische processen subtiel verstoren.

Deze supercluster toont mooi het effect van zwaartekrachtslenzen. Zonder neutrino's zouden er veel meer superclusters zijn geweest, aldus de berekeningen van twee Britse astronomen. bron: NASA

Massa neutrino’s voor eerste keer gemeten – met telescoop

Voor het eerst is er nu een realistische waarde vastgesteld voor de massa van een neutrino. Niet in een deeltjesdetector maar door astronomische waarnemingen door de Planck radioastronomische satelliet.

Erg populair zijn ze niet onder natuurkundigen – de spookachtige neutrino’s, die alleen door hun zwakke wisselwerking en zwaartekracht zijn te meten. Zelfs lichtjaren dik lood – ter vergelijking: de doorsnede van de aarde is plm 0,1 lichtseconde – kan neutrino’s slechts voor enkele tientallen procenten opvangen. Tot overmaat van ramp kunnen neutrino’s oscilleren tussen drie vormen – elektron-neutrino, muon-neutrino en tauon-neutrino, die zich verschillend gedragen bij zwakke-kernkracht interacties. Een detector die elektronneutrino’s kan detecteren, is dus waardeloos voor het detecteren van neutrino’s in de muon- of tauon-staat. Wel bewijzen deze oscillaties dat neutrino’s massa hebben en komen er steeds meer aanwijzingen dat neutrino’s een veel belangrijker rol in de evolutie van de kosmos spelen dan tot nu toe gedacht.

Het raadsel van de ontbrekende superclusters
Ongeveer 100.000 jaar na de Big Bang was de temperatuur zo sterk gedaald dat materie en antimaterie elkaar vernietigden en de materiedeeltjes die we nu kennen overbleven. Bij deze vernietiging kwam een zee van zeer energierijke, dus kortgolvige, fotonen vrij, die we nu waar kunnen nemen als (door de uitrekking van het heelal langgolvig geworden) radiostraling: de kosmische achtergrondstraling.

Deze supercluster toont mooi het effect van zwaartekrachtslenzen. Zonder neutrino's zouden er veel meer superclusters zijn geweest, aldus de berekeningen van twee Britse astronomen. bron: NASA
Deze supercluster toont mooi het effect van zwaartekrachtslenzen. Zonder neutrino’s zouden er veel meer superclusters zijn geweest, aldus de berekeningen van twee Britse astronomen. bron: NASA

We kennen de sterkte en samenstelling van de kosmische achtergrondstraling precies. Hieruit kunnen we afleiden hoeveel massa het heelal moet hebben: immers: elk foton is ontstaan uit een materie- en antimateriedeeltje die elkaar vernietigden en we kennen vrij precies de mate waarin dat is gebeurd. Nu is er een probleem. Er moet, volgens de bekende hoeveelheid fotonen in de achtergrondstraling, veel meer massa zijn dan uit de aanwezige hoeveelheid galactische superclusters, de grootste structuren in het heelal, blijkt. Die massa moet zich ergens anders in schuilhouden.

Neutrino’s als de daders
Een duidelijke kandidaat zijn uiteraard neutrino’s. We weten nu, sinds 2013, dat ze massa hebben. Zouden neutrino’s, die zoals bekend overal ongehinderd doorheen vliegen, met hun nietige massa de vorming van superclusters gehinderd hebben?

Dr Adam Moss van de faculteit natuurkunde en astronomie van de universiteit van Nottingham en zijn collega Richard Batteye van de universiteit van Manchester, Engeland, denken van wel. Volgens hen ligt de massa van de elektron- muon- en tauon- staat van het neutrino bij elkaar opgeteld rond de 0,320 +/- 0,081  elektronvolt. Ter vergelijking: een elektron, tot nu toe het lichtst bekende deeltje met massa, is 510 999 eV, meer dan 1,5 miljoen maal zoveel dus. Alleen deze massa maakt neutrino’s zwaar genoeg om de clustervorming te verstoren en te verklaren waarom het heelal er zo uitziet als het nu doet.

Steriele neutrino’s
Een tweede optie is dat er ook zogeheten steriele neutrino’s bestaan. Dit is een type neutrino, dat ook niet gevoelig is voor de zwakke kernkracht en dus alleen door onverklaarbaar massaverlies, of zwaartekrachteffecten aangetoond kan worden. In dit laatste geval zijn, aldus de berekeningen van het tweetal, neutrino’s zelfs zwaarder: âˆ‘mν=0.06  eV, effectieve steriele neutrinomassa =(0.450±0.124)  eV and Î”Neff=0.45±0.23.

Bron

Richard A. Battye, Adam Moss, Evidence for Massive Neutrinos from Cosmic Microwave Background and Lensing Observations.”  Phys. Rev. Lett. 112, 051303 (2014)

Boekrecensie: De Deeltjestheorie

In zijn boek De Deeltjestheorie zet chemisch technoloog Eit Gaastra zijn ideeën omtrent de relatie tussen deeltjes,  ruimte en tijd uiteen. Naar zijn zeggen belandde de gevestigde natuurkunde door toedoen van Einstein en anderen ongeveer honderd jaar geleden op het verkeerde spoor. Het  gevolg, aldus Gaastra: continue dwalingen. Inderdaad zit de natuurkunde anno nu, zo lijkt het, op een dood spoor. De relativiteitstheorie en de kwantummechanica, volgens Gaastra beide fout, verdragen  elkaar niet. Heeft Gaastra gelijk?

Erudiet geschreven, bronvermelding karig
Gaastra gaat niet over een nacht ijs. In zijn boek komen een groot aantal natuurkundige en astronomische verschijnselen aan bod, zoals radioactiviteit, kwantumtunneling, de paradox van Olbers en roodverschuiving. Wat dat betreft is het boek een goede prikkel om natuurkundige kennis te verkennen en uit te diepen. Helaas ontbreken bronvermeldingen naar wetenschappelijke artikelen, zelfs ArXiv preprints en dergelijke, al wordt er wel verwezen naar boekwerken van collega-dwarsdenkers. Dit maakt het natrekken van sommige uitspraken onmogelijk. Vooral bij een speculatief natuurfilosofisch boek als dit is dat een stevig gemis. Gezien het speculatieve karakter van het boek, is het voor de lezer verstandig zaken niet zonder meer te geloven maar elke uitspraak na te trekken. De auteur is hier zelf overigens ook eerlijk over: hij ziet het boek meer als een vertrekpunt voor discussies dan als een absolute waarheid.

‘Oneindig kleine deeltjes’
Volgens Eit Gaastra nemen alle deeltjes een bepaald volume in, en hebben deze groottes variërend van galactische superclusters (die hij ook als deeltjes ziet) tot kleiner zelfs dan volgens het Standaardmodel elementaire deeltjes zoals quarks en leptonen. Deze deeltjes bewegen door een wat wiskundigen euclidische ruimte noemen: een ruimte dus waarin twee parallelle lijnen elkaar nooit raken. De ruimtetijdvervormingen die we waarnemen, worden volgens de theorie van Gaastra veroorzaakt, omdat de deeltjes in materie botsen met de deeltjes in deze ruimte. Alles beweegt volgens Gaastra in een zee van deeltjes, die zich in een oneindige cascade vertakken tot steeds kleinere deeltjes. Veel energetische omzettingen komen volgens Gaastra neer op het uiteenvallen van grote deeltjes in kleinere deeltjes. Dit maakt volgens hem ook de kwantummechanica zoals we die nu kennen, overbodig.18258191-De-deeltjestheorie-Eit-Gaastra

‘Big Bang onzin’
Ook de heersende kosmologische theorie dat materie, ruimte en tijd van het heelal voortkomen uit een oerexplosie van ongeveer 13,5 miljard jaar geleden, de Big Bang, klopt volgens Gaastra niet. Hij stelt dat de bekende verschijnselen die op een big bang wijzen, zoals de roodverschuiving bij van ons weg bewegende sterrenstelsels, veroorzaakt worden door interacties van fotonen, lichtdeeltjes, met deeltjes tijdens de lange reis en niet, zoals de meeste kosmologen en astronomen geloven, door de uitzetting van het heelal waardoor de fotonen uitgerekt worden.

Entropie
Een begrip dat in het boek van Gaastra ontbreekt, is entropie, wat ruwweg overeenkomt met wanorde. De Tweede Hoofdwet van de thermodynamica stelt, dat in een afgesloten systeem, bijvoorbeeld een volmaakt geïsoleerde kist met een gas er in, de wanorde altijd toeneemt tot het maximum (de gaswolk vult de gehele kist). Juist dit begrip, dat Gaastra als chemisch technoloog uitstekend kent, is de nekslag voor zijn deeltjestheorie. Als het heelal geen begin kent, zoals Gaastra stelt, moet het oneindig oud zijn. In een afgesloten systeem in evenwicht verandert de temperatuur  niet. Echter: de systemen van Gaastra zijn nooit afgesloten. Er zijn altijd kleinere deeltjes waarin deeltjes uiteen kunnen vallen. Dit betekent dat bewegingsenergie, zoals die van trillende moleculen in een warm voorwerp, volgens zijn theorie verdeeld zal worden over kleinere deeltjes, die weer in nog kleinere deeltjes uiteenvallen etc. Op een gegeven moment zal alle bewegingsenergie van het afgesloten systeem  in de kleinere deeltjes zitten, ad infinitum. Het heelal zoals we dat nu kennen en ver uit thermodynamisch evenwicht is, zal dan ook niet mogelijk zijn. Ook Gaastra’s stelling dat bij reacties tussen kleinere deeltjes veel meer energie vrijkomt dan bij grote, baat hem niet. Immers, zo ontstaat een cascade van zeer energierijke kernreacties die elkaar eindeloos versterken waardoor uiteindelijk het heelal zou ontploffen.

Geen verklaring voor ruimtetijd
Een ander bezwaar is dat Gaastra’s theorie, overigens net zoals het Standaardmodel, “achtergrondsafhankelijk” is. Het Standaardmodel heeft de algemene relativiteitstheorie nodig om de ruimte en tijd, de ‘achtergrond’, te beschrijven waarin de formules van het Standaardmodel werken en de deeltjes van het Standaardmodel  zich bewegen. Gaastra verwerpt de algemene relativiteitstheorie, en komt in plaats hiervan met een oneindig kluwen deeltjes die dan wel weer over volume beschikken. Hij geeft wel aan dat volgens hem ruimtetijd uit een zee van deeltjes bestaat, maar maakt niet duidelijk hoe deze het volume uit het niets creëren.

Zou een deeltjestheorie kunnen werken?
Het Higgsmechanisme, waarvan nu is aangetoond dat het werkt zoals voorspeld, is in feite een deeltjestheorie. Higgsdeeltjes vormen door hun voortdurende reacties met andere deeltjes een ‘stroop’ die alle deeltjes met massa, zoals quarks en leptonen, door deze kleverigheid massa geeft. De zee van Higgsdeeltjes, het Higgsveld, is een scalair veld, in normale mensentaal: een veld dat op elk punt in de ruimtetijd alleen een getalswaarde heeft (een scalair), niet een richting (vector). Wellicht vormen deze Higgsdeeltjes de fundamentele bouwsteen van ruimtetijd. Dit zou ook de algemene relativiteitstheorie overbodig maken, althans: reduceren tot een beschrijving van het macroscopische gedrag van Higgsdeeltjes. Inderdaad zijn enkele natuurkundigen er in geslaagd een kwantumbeschrijving van een zwart gat te maken. Wellicht zijn de ‘gravitonen’ waar ze het over hebben in dit artikel, in werkelijkheid een bepaalde configuratie van Higgsdeeltjes en geeft de scalair van het Higgsveld dan de lokale zwaartekrachtsdichtheid aan.

Bibliografische gegevens
Eit Gaastra, De deeltjestheorie (245 pagina’s)
Jaar van uitgifte: 2013 (eerste druk)
Verkoopprijs: € 17,95

ISBN: 9789048431403
NUR: 730
Uitgeverij Free Musketeers, Zoetermeer

Te bestellen bij onder meer: 
Free Musketeers webshop of een lokale boekhandel