Antimaterie-aandrijving met huidige techniek te bouwen
Eigenlijk is er op dit moment maar één echt realistische optie om de sterren te bereiken: antimaterie. Antimaterie produceren is nog steeds extreem moeilijk, maar er is nu wel een motorontwerp waarmee snelheden tot zeventig procent van de lichtsnelheid zijn te bereiken. Dus als een uitvinder een efficiënte methode bedenkt om antimaterie te maken en er ook nog even een overvloedige energiebron bij bedenkt, kunnen we op weg…
Ideale raketbrandstof
Antimaterie is volledig in energie om te zetten, door deze met dezelfde hoeveelheid materie samen te voegen. Een gram antimaterie levert hiermee 25 miljoen kilowattuur op, voldoende energie om in een elektrische auto naar de zon te rijden en weer terug (of, wellicht praktischer, met een ruwweg vergelijkbare auto 6000 maal de wereld rond).
Geen wonder dat ruimtevaartvisionairen serieus aandacht besteden aan antimaterie als aandrijving. Antimaterie is de enige bekende brandstof waarmee snelheden in de buurt van de lichtsnelheid zijn te bereiken. Helaas (of gelukkig, want antimaterie is een uitermate explosief goedje), is antimaterie schaars en wordt met atomen tegelijk gemaakt. In een gram waterstof zitten alleen al 3,1 * 10^23 atomen, dus alle sterren in het heelal zijn allang tot doffe sintels afgekoeld tegen de tijd dat je op die manier genoeg antimaterie hebt gemaakt voor een reis naar de sterren.
Eindelijk een goede motor
Maar toch, sommige natuurkundigen (doorgaans grote science fiction fans), laten zich daardoor niet weerhouden. Want stel, we vinden wel een overvloedige antimateriebron uit. Ronan Keane van Western Reserve Academy en Wei-Ming Zhang van Kent State University, beide in de Amerikaanse staat Ohio, hebben dan alvast een bruikbare antimaterie-motor op de plank liggen.
De maximumsnelheid van een raket hangt af van de snelheid waarmee het gas of andere deeltjes uit worden gestoten, het deel van de raketmassa dat wordt besteed aan brandstof en de strategie waarmee de brandstof wordt opgestookt. Het tweetal besloot zich toe te leggen op het maximaliseren van de uitstroomsnelheid. Immers: we kennen niet de overwegingen van raketbouwers in de (verre) toekomst, aldus het tweetal. Wel weten we dat een hoge uitstroomsnelheid in elke raket handig is. In dit geval: de uitstroomsnelheid van de deeltjes die ontstaan bij de vernietiging van materie en antimaterie.
Deze impuls wordt voornamelijk opgewekt door het gebruik van een magnetisch veld dat geladen deeltjes afbuigt in de annihilatie. Dit tweetal richt zich op de wederzijdse vernietiging van protonen en antiprotonen waarbij geladen pionen (instabiele quarkparen) ontstaan. Hoe efficiënter het magneetveld alle impuls de juiste richting op kan sturen, hoe efficiënter de aantimaterieaandrijving. In deze opzet hangt de uitlaatsnelheid van de pionen af van twee factoren: hun gemiddelde beginsnelheid als ze ontstaan en de efficiëntie van de magnetische sproeikop.
Motor efficiënt en binnen bereik
In het verleden berekenden diverse natuurkundigen dat de pionen met 90% van de lichtsnelheid zouden reizen maar dat de sproeikop slechts 36% efficiënt zou zijn: met elkaar vermenigvuldigd, rond de 0,32 c. Teleurstellend langzaam. In het nieuwe ontwerp van Keane en Zhang, waarbij ze gebruik maakten van de GEANT4 (short for Geometry and Tracking 4) software die het CERN gebruikt om het gedrag van botsende bundels protonen en antiprotonen te berekenen, blijkt echter zowel goed als slecht nieuws. Slecht nieuws is dat de pionen die op deze manier worden geproduceerd, geen 90% maar slechts 80% van de lichtsnelheid bereiken. Het goede nieuws is dat uit de simulaties blijkt dat een magnetische sproeikop veel efficiënter kan zijn dan tot nu toe gedacht: tot de 85% efficiënt. Samen betekent dit dat tot maar liefst 70% van de lichtsnelheid bereikt kan worden. Althans in theorie. Bij 0,7 c vertraagt de tijd merkbaar.
Ander goed nieuws is dat hiervoor niet eens een extreem sterk magnetisch veld nodig is. 12 Tesla is een veldsterkte die nu al in MRI-scanners en in het CERN wordt gebruikt. Kortom: we kunnen nu al een dergelijke antimateriemotor bouwen.
Nu de brandstof nog….
Volgens sommige schattingen duurt het ongeveer duizend jaar om met een installatie als van het CERN een miljoenste gram antimaterie te maken. Daarmee kom je uiteraard niet erg ver. Keane en Zhang hebben hiervoor een oplossing: het oogsten van antiprotonen uit een dunne ring antimaterierijk materiaal die de aarde omringt. PAMELA, de satelliet die de metingen deed, oogstte echter slechts 28 antiprotonen in twee jaar. Het CERN produceert er meer per dag. Het is vermoedelijk slimmer om met een enorm magnetisch schepveld bundels antimaterie uit de kosmische straling te oogsten of, nog beter, deze met behulp van zonne-energie te produceren. De zon zet per seconde bijna duizend ton massa om in energie. Deze energie is weer in materie om te zetten. Als je de gehele zon zou aftappen, zou je in ongeveer een seconde de antimaterie kunnen produceren voor een ruimtereis. Dus wie weet,komt het nog eens zover…
Bron:
Beamed Core Antimatter Propulsion: Engine Design and Optimisation, Arxiv.org, 2012
Antimaterie-aandrijving met huidige techniek te bouwen Meer lezen »