kosmologie

Lawrence Krauss toonde aan dat onzichtbare deeltjes via het Higgsmechanisme in principe donkere energie kunnen opwekken. Bron: Arizona State University

‘Higgs-boson verklaart donkere energie’

Het Higgsboson is het laatste deeltje dat door het Standaardmodel werd voorspeld en is ontdekt – althans, zo lijkt het. Nieuw werk van natuurkundige Laurence Krauss wijst erop dat het Higgsboson kan verklaren waarom het heelal steeds sneller uitzet – de mysterieuze ‘donkere energie’.

Wat is het Higgsdeeltje?
Het Higgsdeeltje is een deeltje met spin nul (wat betekent dat het bijbehorende Higgsveld alleen een sterkte, maar geen richting heeft). Het Higgsdeeltje kent een wisselwerking met bepaalde elementaire deeltjes in het Standaardmodel (om precies te zijn: quarks, leptonen, neutrino’s en de W- en Z-deeltjes). Deze wisselwerking, het Higgsmechanisme, is volgens de theorie achter het Higgsdeeltje de reden dat we bij deze deeltjes massa waarnemen.  Persoonlijk vind ik het Higgsdeeltje een onding, maar nu overtuigend is aangetoond dat het deeltje bestaat, moet ik het hoofd buigen voor de minst onbetrouwbare bron van waarheid, experimenteel onderzoek.

Wat is donkere energie?
In de tijd dat Einstein zijn algemene relativiteitstheorie opstelde geloofden astronomen nog massaal in het steady state heelal. In zijn beroemde zwaartekrachtsvergelijking, [latex]R_{\mu \nu} – {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}[/latex], introduceerde Einstein een zogeheten kosmologische constante, in de formule hierboven weergegeven door de Griekse hoofdletter lambda (Λ). Zijn theorie voorspelde dat het heelal zonder deze constante Λ, in zijn oorspronkelijke versie negatief van waarde, uit zou zetten. Later werd door o.m. de astronoom Hubble ontdekt dat het heelal uitzet, wat de kosmologische constante overbodig maakte (m.a.w. Λ=0). Einstein noemde de introductie van deze constante later “de grootste blunder van zijn leven”. Deze opmerking bleek vier decennia na Einsteins dood voorbarig. Het heelal zet namelijk niet alleen uit, ontdekten astronomen in 1998, het zet steeds sneller uit! Er bestaat dus wel degelijk een Î›, maar dan met een positieve waarde. Het verschijnsel dat we aanduiden met donkere energie is verantwoordelijk voor Î›. Erg groot is de donkere energie niet, naar dagelijkse maatstaven: 10−29 g/cm3. De donkere energie in het volume van de aarde is bijvoorbeeld tien milligram, het energie-equivalent van tien suikerkorreltjes dus. Omdat het volume van het heelal enorm groot is, is de energieinhoud van de donkere energie toch vele malen groter dan die van alle ‘massa in het heelal.

Lawrence Krauss toonde aan dat onzichtbare deeltjes via het Higgsmechanisme in principe  donkere energie kunnen opwekken. Bron: Arizona State University
Lawrence Krauss toonde aan dat onzichtbare deeltjes via het Higgsmechanisme in principe donkere energie kunnen opwekken. Bron: Arizona State University

‘De slechtste voorspelling uit de geschiedenis van de natuurkunde’
Er worden al een klein eeuw verwoede pogingen gedaan om dit resultaat in overeensteming te brengen met de andere grote theorie uit de natuurkunde, de kwantummechanica. Kwantumveldtheorieën voorspellen dat het vacuüm inderdaad een nulpuntsenergie heeft, maar deze waarde is 10120 maal groter dan de werkelijk gemeten waarde van de kosmologische constante. Zou dit kloppen, dan zou een kubieke centimeter vacuüm meer massa hebben dan vele malen het zichtbare heelal. Kortom: hier klopt iets echt niet.

Higgsdeeltje als reddende engel
In zijn nieuwe artikel denkt Krauss – ook een Higgs-scepticus tot het bittere einde – een oplossing gevonden te hebben voor dit nijpende dilemma. Zoals eerder opgemerkt, geeft het Higgsveld een kleine massa aan bepaalde deeltjes. Krauss en collega Dent stellen nu voor dat er nauwelijks-waarneembare deeltjes bestaan, die op zwakke wijze wisselwerken met het Higgsveld. Door deze zwakke wisselwerking ontstaat de zeer zwakke positieve energie van het vacuüm, die het heelal uit elkaar drijft. Omdat de wisselwerking met ons waarneembare universum extreem zwak is, liggen hun effecten ver onder onze detectiedrempel. Uiteraard is dit het verplaatsen van het probleem – er worden nieuwe, door Krauss niet nader gespecificeerde, deeltjes gepostuleerd – maar dergelijke deeltjes komen wél voor in gangbare kwantumveldtheorieën die de inflatiefase van het vroege heelal beschrijven. Kortom: natuurkundigen kunnen nu op zoek naar deeltjeskandidaten die verantwoordelijk zijn voor de ‘onzichtbare wereld’ die ons heelal steeds verder en sneller uit elkaar rukt

Bronnen
On the trail of dark energy: physicists propose Higgs boson ‘portal’, Arizona State University News (2013)
Krauss, Lawrence M., Dent, James B., Higgs Seesaw Mechanism as a Source for Dark Energy, Physical Review Letters (2013), gratis ArXiv versie

Wat gebeurde er voor de Big Bang?

Met de ontdekking van de kosmische achtergrondstraling werd voor de meeste kosmologen overtuigend aangetoond dat het heelal ooit is ontstaan uit een punt van zeer hoge dichtheid en temperatuur, door criticus Fred Hoyle spottend Big Bang genoemd. De gangbare kosmologie gaat er van uit dat met de Big Bang en de ruimte, ook de tijd ontstond. Dit zou de vraag naar wat er voor de Big Bang was, zinloos maken. In deze documentaire, gemaakt in samenwerking met de Europese ruimtevaartorganisatie ESA, worden een aantal vragen, voorzover dat kan, beantwoord.

Er zijn enkele kosmologische modellen die wel degelijk uitgaan van een bestaan van het heelal voor de Big Bang. In ieder geval moet iets de Big Bang in gang gezet hebben, althans: de Big Bang verklaren. Dit kan een ander heelal zijn, maar ook bijvoorbeeld een begindefinitie, zoals het natuurlijke getallenstelsel met de nul en een begint.

De halo met donkere materie die de Melkweg zou omringen. Bron: CERN

Spookmelkweg ontdekt?

Wat als donkere-materiedeeltjes een even complexe wereld als de zichtbare materie vormen, compleet met donkere-materie atomen? Onverklaarbare meetresultaten waarbij een overschot aan positronen werd aangetroffen in kosmische straling lijken op iets dergelijks te wijzen. Heeft de Californische astronoom James Bullock gelijk en bestaat er een ‘donkere sector’? Alhoewel deze kan verklaren waarom we geen donkere materie waarnemen op aarde, zou dit betekenen dat donkere materie heel anders is dan we ons tot nu toe hebben voorgesteld.

Verborgen massa
Sterrenstelsels en clusters gedragen zich anders dan op grond van de aanwezige zichtbare materie, zoals sterren, gas- en stofwolken, kan worden verwacht. Er lijkt vijf keer zoveel massa te zijn als verwacht. Deze ‘donkere materie’ lijkt echter helemaal niet op standaard materie te reageren, behalve dan door zwaartekracht. Er is daarom nog steeds niet definitief donkere materie aangetoond, anders dan door de zwaartekrachtswerking. Volgens de populairste modellen bestaat donkere materie uit zware deeltjes, WIMP’s, die alleen met elkaar wisselwerken. In dat laatste geval ontstaan elektronen en positronen, die we waar kunnen nemen. Dit zou de metingen van de Alpha Magnetic Spectrometer, aan boord van het internationale ruimtestation ISS,  kunnen verklaren. Bij deze metingen werd een groter dan voorspeld aantal positronen aangetroffen. Wel moeten de elektronen en positronen dan inderdaad de voorspelde energie hebben.

De halo met donkere materie die de Melkweg zou omringen. Bron: CERN
De halo met donkere materie die de Melkweg zou omringen. Bron: CERN

Verborgen kracht?
Een tweede probleem is dat er veel meer positronen zijn dan de standaard modellen met WIMP’s kunnen verklaren. Klawrblijkelijk botsen WIMP’s, als ze bestaan, veel vaker met elkaar dan de populairste WIMP-modellen voorspellen. Wat kan hiervan de oorzaak zijn? Een onbekende natuurkracht, veronderstelt Neal Weiner of New York University met zijn collega’s. Deze zou alleen op WIMP’s inwerken en zo de kans op botsingen veel groter maken. Wel moet deze kracht in staat zijn om te verklaren hoe zich sterrenstelsels en clusters vormen. Dit lukt al vrij aardig met de klassieke theorieën.

Twee soorten WIMP’s?
Lisa Randall van Harvard University en haar collega’s bedsachten een andere oplossing. Volgens haar zijn er meer dan één soort WIMP, 85% van de klassieke soort die nauwelijks op zichzelf reageert en 15 procent van een andere soort, die dat wel doet en onderhevig is aan de geheimzinnige kracht. Op die manier blijven de moeilijkheden met de nieuwe ‘donkere kracht’ beperkt terwijl de ‘boost factor’ toch behouden blijft. Wel moet er dan een tweede deeltje worden geïntroduceerd, een soort  ‘donker foton’.

‘Onzichtbare Melkweg’
Klopt haar model, dan zouden de gevolgen interessant zijn. Deeltjes die wél op elkaar reageren gedragenzich namelijk ongeveer zo als zichtbare materie. Ze vormen een soort atoomstructuren. Door voortdurende wisselwerkingen hopen deze zich net als zichtbare materie uiteindelijk op in een schijf, niet in een bol zoals deeltjes die alleen door de zwaartekracht worden beïnvloed. Er zou dan een tweelingzus van de Melkweg, een schaduwmelkweg, bestaan die met de zichtbare materie meedraait of onder een bepaalde hoek met deze beweegt. Het hoeft niet bij deze twee soorten te blijven, er zou net als bij zichtbare materie een hele ‘dierentuin’ van onzichtbare deeljes kunnen bestaan. Er is echter één probleem: er zijn, op wat dubbelzinnige metingen uit Italië na, geen sporen van dit soort deeltjes aangetroffen. Aan de andere kant blijken er duidelijke sporen te zijn van een onzichtbare invloed, zie bovenstaande video. De ontdekkers zijn nu op zoek naar soortgelijke botsingen.

Sporen van de onzichtbare dubbelganger
Als Randall gelijk heeft en er inderdaad een donkere onzichtbare schijf bestaat, dan zou dit merkbaar moeten zijn in de bewegingen van sterren.
De Gaia satelliet, met een lanceerdatum in oktober 2013, zou deze kunnen waarnemen. Omdat de schijf ongeveer even snel rondtolt als de Melkweg, zouden af en toe toch WIMPs protonen in de kern van de zon kunnen treffen, waarbij neutrino’s vrijkomen. Probleem: deze neutrino’s zijn niet waargenomen.

Bron
New Scientist

Video: tijdreizen in een alternatief heelal

Tijdreizen is in ons universum, voorzover we dat kunnen vaststellen, een onmogelijkheid.
Maar wat als het universum een heel andere vorm zou hebben dan het onze? Dan verandert de zaak totaal.

De Duitse kosmoloog Wolfgang Schleich en zijn collega’s van de universiteit van Ulm hebben het scenario wiskundig uitgewerkt en het resultaat verfilmd. Maak een reis door de bizarre alternatieve werelden waar ruimtetijd heel anders is dan hier….

Het elektrisch universum

In de standaard kosmologie wordt de zwaartekracht gezien als de belangrijkste kracht in het universum. In deze documentaire wordt aandacht gevraagd voor een andere kracht die vele malen sterker is: elektriciteit. “Bliksemflitsen van de Goden” gaat over het elektrisch universum. Het is een vernieuwende kosmologie die om uw aandacht vraagt. De documentaire is op meerdere plaatsen vrij te bekijken, maar alleen deze versie is voorzien van een Nederlandse ondertiteling.

For more information on related topics, go to www.thunderbolts.info, your gateway to the Electric Universe….

“Today, nothing is more important to the future and credibility of science than liberation from the gravity-driven universe of prior theory. A mistaken supposition has not only prevented intelligent and sincere investigators from seeing what would otherwise be obvious, it has bred indifference to possibilities that could have inspired the sciences for decades.”

 

Wat denken de natuurkundigen en anderen met wat meer verstand van dit soort zaken hier van deze documentaire? Hebben de mensen in deze documentaire een revolutionaire visie die de hele kosmologie op haar kop zet of is het vooral een mooi verhaal met vooral pseudo wetenschappelijke inhoud? Professioneel commentaar zeer gewenst.

Aanverwante informatie:
-) www.thunderbolts.info

Eerdere artikelen:
-) Carl Sagan – Cosmos
-) Verken het zonnestelsel vanuit je huiskamer

De vijfde dimensie

Voor het eerst in deze serie nemen we nu een duik in de wereld van het onbekende. Er zijn drie ruimtedimensies en één tijddimensie. Samen vormen deze de ruimtetijd van het heelal waarin we leven.  maar wat gebeurt er als er een extra dimensie toevoegen?

De makkelijkste manier om je de vijfde dimensie voor te stellen is als volgt. Stel, je loop een meter naar het noorden. Dan beweeg je in één dimensie, namelijk op de noord-zuid lijn. Als je een cirkel loopt, beweeg je in twee dimensies. Als je tijdens het lopen in een cirkel ook een trap op en af loopt, beweeg je in drie dimensies. Omdat de tijd verstrijkt, beweeg je ook in de vierde dimensie, wat je ook doet. Maar wat als je een stap in de vijfde dimensie doet? De wereld om je heen verdwijnt dan.

Er bestaat in natuurkundige theorieën iets als ‘imaginaire tijd’. Imaginaire getallen ontstaan als je de wortel trekt uit een negatief getal en de eenheid van het imaginaire getallenstelsel, i, is gedefinieerd als de wortel uit -1.

Stephen Hawking deed veel theoretisch onderzoek naar zwarte gaten en in zijn vergelijkingen speelt imaginaire tijd een belangrijke rol. Een andere manier om de vijfde dimensie voor te stellen is als een dimensie, waarin zich parallelle heelallen bevinden. Volgens de veelwereldentheorie van Hugh Everett III splitst bij elke meting van een kwantumdeeltjehet heelal zich in tweeën, afhankelijk van de uitkomst van de meting. Is ons heelal een plakje uit een enorme vijfdimensionale stapel van heelallen en vormt deze een ‘waarschijnlijkheidsruimte’?

De Melkweg wordt omringd door een onzichtbare halo van donkere materie. Deze moet het vreemde rotatiegedrag van de Melkweg verklaren. bron: ESO

UPDATE: ‘Donkere materie bestaat toch wel’

De nauwkeurigste zoektocht ooit naar donkere materie in de omgeving van de zon, wijst uit dat er geen enkel zwaartekrachtseffect van donkere materie is. Dit terwijl donkere-materiemodellen deze wel voorspellen. Astronomen en natuurkundigen ziten nu met de handen in het haar. Alleen afwijkingen in de zwaartekrachtstheorie – of een totaal nieuwe natuurkunde – lijken nog soelaas te bieden.

De Melkweg wordt omringd door een onzichtbare halo van donkere materie. Deze moet het vreemde rotatiegedrag van de Melkweg verklaren. bron: ESO
De Melkweg wordt omringd door een onzichtbare halo van donkere materie. Deze moet het vreemde rotatiegedrag van de Melkweg verklaren. bron: ESO

Bizarre snelle draaiing
Met sterrenstelsels zoals de Melkweg is wat merkwaardigs aan de hand. Het buitenste deel lijkt in verhouding veel sneller te draaien dan het binnenste deel. Dit is niet wat je zou verwachten. Immers, de zwaartekracht in het binnenste deel van het sterrenstelsel is veel sterker dan in de buitenste delen. Je zou dus verwachten dat het binnenste deel veel sneler zou draaien dan het buitenste deel. Dat blijkt niet het geval. De reden is, vermoeden astronomen, een grote onzichtbare halo van ‘donkere materie’: materie die niet reageert op zichtbare materie, maar wel zwaartekracht uitoefent. Het binnenste deel van het Melkwegstelsel merkt niets van de donkere materie in het buitenste deel, omdat de zwaartekracht daarvan zichzelf opheft. Sterren en andere objecten aan de rand van het sterrenstelsel merken die invloed uiteraard wel, waardoor ze veel sneller rond het centrum van de Melkweg draaien dan verwacht kan worden als er geen donkere materie zou zijn.

Door nauwkeurige metingen te doen aan sterren en hun bewegingen, kunnen astronomen een globale indruk krijgen van de zwaartekrachtsvelden waardoor deze sterren worden beïnvloed en dus de donkere-materieverdeing in bijvoorbeeld onze eigen Melkweg. Deze heeft veel weg van een bolvormige halo, die in het centrum veel dichter is dan aan de randen.

Op zoek naar de zwaartekracht van donkere materie
Volgens het gebruikelijke donkere-materiemodel bevindt zich ongeveer vier keer zoveel donkere materie als zichtbare materie in het heelal (en ongeveer ook in die verhouding in de Melkweg). Dit betekent ook, dat er de nodige donkere materie moet zijn in het gebied rond de zon. De invloed daarvan moet merkbaar zijn op de bewegingen van sterren. Precies dat is nu onderzocht. Een team astronomen gebruikte de (vrij kleine) MPG/ESO 2.2-meter telescoop op ESO’s La Silla Observatory, in combinatie met andere telescopen. Hierbij maten ze zeer precies de bewegingen van meer dan 400 sterren tot op 13 000 lichtjaar afstand van de zon. Met behulp van deze nieuwe data berekenden ze de massa van het materiaal in de nabijheid van de zon, een volume dat vier keer zo groot is als in eerdere onderzoeken. Volgens de donkere-materietheorie zweeft er in een volume zo groot als de aarde rond een kilogram donkere materie. Niet veel, maar gezien de enorme omvang van het bestudeerde volume, is het totaaleffect toch enorm.

Spoorloos
Naar bleek, was de hoeveelheid massa, afgeleid van de gemeten zwaartekracht, precies gelijk aan wat verwacht kon worden aan de hand van de massa van bekende sterren, stofwolken en gaswolken in dit gebied. Er bleek geen spoor van donkere materie aanwezig, aldus teamleider Christian Moni Bidin (Departamento de Astronomía, Universidad de Concepción, Chili). Volgens de berekeningen moest de donkere materie opduiken en sterbewegingen verstoren. Dit bleek niet te gebeuren: de sterren gedroegen zich precies zoals verwacht kon worden aan de hand van de bekende zwaartekrachtsbronnen. Dit is heel vervelend voor astronomen, want donkere materie vervult nu al een glansrol in allerlei theorieën die het ontstaan van sterrenstelsels beschrijven. Die kunnen dus waarschijnlijk de prullenbak in. Ook onze hoop om donkere materie door middel van zeer gevoelige ondergrondse deeltjesdetectoren te ontdekken, is waarschijnlijk tevergeefs.

Andere verklaring
Als donkere materie de waargenomen effecten niet verklaart, moet er wat anders aan de hand zijn. Een klein aantal natuurkundigen gelooft dat de zwaartekracht zich op zeer grote afstanden anders gaat gedragen: MOND (MOdified Newtonian Dynamics). Interessant is dat dit een (miniem) effect op de baanbewegingen van de ruimtesondes Pioneer 10 en Pioneer 11 moet hebben. Hierover is dan ook een vinnig debat aan de gang: volgens de meeste natuurkundigen worden de afwijkingen veroorzaakt door warmtestraling, die de ruimtesondes een zetje geeft. Zoals Sir Arthur Conan Doyle zijn held Sherlock Holmes al liet zeggen: als het onmogelijke is uitgesloten, wordt het onwaarschijnlijke waarschijnlijk. We zullen dus dit soort verklaringen – of nog veel verder gaande verklaringen, zoals die van Erik Verlinde of Arto Annila – serieus moeten gaan onderzoeken.

UPDATE: Fout in berekeningen
Zoals vaker in de wetenschap is ook dit resultaat niet zo solide als het oorspronkelijk leek. Toen een andere groep onderzoekers de berekening naliep bleek er wel degelijk donkere materie aanwezig. Wordt vervolgd.

Bron
Moni Bidin C., Carraro, G., Méndez, R.A., & Smith, R., Kinematical and chemical vertical structure of the Galactic thick disk II. A lack of dark matter in the solar neighborhood, arXiv:1204.3924 (2012)

Volgens Hawkings nieuwe theorie heeft de topologie van ons heelal veel weg van dit tegelpatroon van M.C. Escher, Cirkellimiet IV. Copyright: M.C. Escher (1960)

Hawking: heelal lijkt op Escher-pentekening

Het heelal zou wel eens veel weg kunnen hebben van één van de beroemdste pentekeningen van de Nederlandse kunstenaar Maurits Cornelis Escher. Dat is althans de strekking van een onderzoek dat ’s werelds bekendste wetenschapper, Stephen Hawking, verrichtte. Hawking claimt dat zijn nieuwe theorie in staat is een geschikte geometrie te scheppen, zodat de omstreden snaartheorie in overeenstemming kan worden gebracht met onze alledaagse wereld.

‘Onmogelijke’ wiskundige handigheid
De berekeningen door Hawking en zijn medewerkers berusten op een wiskundige kunstgreep, die tot nu toe onmogelijk werd geacht. Als de theorie de kritische tests van Hawkings collega’s overleeft, zou de theorie kunnen verklaren hoe het heelal ontstond uit de Big Bang en in staat zijn kwantummechanica en zwaartekracht met elkaar te verenigen. “We hebben een nieuw pad gevonden naar het ontwikkelen van snaartheoriemodellen van onze wereld,” aldus collega-theoretisch natuurkundige Thomas Hertog  van de Katholieke Universiteit Leuven die met Hawking samenwerkte aan het project.

Volgens Hawkings nieuwe theorie heeft de topologie van ons heelal veel weg van dit tegelpatroon van M.C. Escher, Cirkellimiet IV. Copyright: M.C. Escher (1960)
Volgens Hawkings nieuwe theorie heeft de topologie van ons heelal veel weg van dit tegelpatroon van M.C. Escher, Cirkellimiet IV. Copyright: M.C. Escher (1960)

Hyperbolische ruimte
De werken van Escher waar het hier om gaat zijn tesselaties, tegelpatronen van herhaalde vormen,zoals de elkaar afwisselende vormen van engelen en vleermuizen in de afbeelding Cirkellimiet IV.  Hoewel de afbeelding plat is, is het in feite een projectie op een plat vlak van een hyperbolische ruimte. Een hyperbolische ruimte is het tegenovergestelde van een boloppervlak. Een driehoek op een bol heeft hoeken die bij elkaar opgeteld meer zijn dan 180 graden. Voorbeeld: een driehoek met één punt op de noordpool, één op de evenaar ten zuiden van Greenwich en één op 90 graden oosterlengte, ook op de evenaar, kent drie rechte hoeken van 90 graden. Een driehoek op een hyperbolisch vlak heeft juist hoeken die opgeteld samen  minder dan 180 graden zijn. Een hyperbolisch vlak ziet er uit als een golvende houtzwam- of koraalachtige structuur. Probleem. Zeer nauwkeurige driehoeksmetingen in ons heelal wijzen uit dat we in een vrijwel volmaakt plat heelal leven.

Wetenschappelijk geïnspireerde breiliefhebbers maken dit soort modellen van hyperbolische vlakken. Met breien kan dit ook gemakkelijk: het aantal steken per breilaag met een vast percentage laten toenemen.
Wetenschappelijk geïnspireerde breiliefhebbers maken dit soort modellen van hyperbolische vlakken. Met breien kan dit ook gemakkelijk: het aantal steken per breilaag laten variëren.

Hoewel Einsteins algemene relativiteitstheorie nauwkeurig de waarnemingen verklaart, kent de theorie twee gebreken. De theorie kan de Big Bang niet verklaren en de theorie is in strijd met de kwantummechanica. Doorgaans hebben natuurkundigen daar geen last van, want op kwantumschaal speelt op aarde alleen de speciale relativiteitstheorie een rol. De relativiteitstheorie schept de ruimte waarin de kwantumprocessen zich afspelen. De snaartheorie verenigt beide theorieën en verklaart ook de Big Bang, maar is in strijd met wat we van dit heelal weten. De snaartheorie voldoet het beste in een heelal met een negatieve kromming (een hyperbolisch heelal dus) en een negatieve kosmische constante (welke het heelal verder zou doen instorten in plaats van, zoals we waarnemen, steeds sneller doet uitzetten).

Hawking, Hertog en James Hartle van de University of California, Santa Barbara, stellen nu een brug voor. Ze hebben een manier gevonden om met een negatieve kosmologische constante toch een uitzettend heelal te prouceren.  Goed nieus voor aanhangers van de snaartheorie, die er in het verleden flink van langs kregen  omdat hun theorie totaal niet overeen kwam met het heelal zoals we dit waarnemen en zelfs niet te toetsen is.

Kwantumkosmologie
In de tachtiger jaren ontwikkelden Hawking en Hartle een kwantumkosmologische theorie, waarin ze door middel van een golffunctie de waarschijnlijkheid beschreven dat bepaalde universa zich vormden na de Big Bang. Waaronder ook universa waarin de natuurwetten niet het ontstaan van aardachtig leven toelaten of de geschiedenis heel anders verliep dan in ons heelal. Ze probeerden hierbij een positieve kosmologische constante in hun universa te drukken. Een groot succes was dit niet. Snaartheoretici kampten met vergelijkbare problemen. Op de een of andere manier ging een positieve kosmologische constante niet samen met een wiskunstig realistische weergave van dit heelal.

Brug naar de snaartheorie
Hawking en zijn twee collega’s beschrijven nu een waaier aan universa die tevoorschijn komen van golffuncties met negatieve kosmologische constanten, waarvan sommige steeds sneller uitzetten.  Naar bleek, volgden deze automatisch uit het bestaan van de kwantumfunctie. Voor één golffunctie die ze onderzochten, bleek dit type heelal zelfs het waarschijnlijkste. De essentiële doorbraak kwam toen de groep zich realiseerde dat de golffunctie waarmee ze aan het spelen waren, omgezet kon worden in een bepaalde formulering van de snaartheorie, zoals geproduceerd door snaartheoreet Juan Maldacena in 1997.[2] “Er bleek een wiskundig erg elegant verband te bestaan,” aldus Hertog.
Toen ze deze wiskundige brug eenmaal op het spoor waren, besloot Hawkings team om de twee proberen samen te voegen door een nieuwe golffunctie op te stellen, deze keer met een negatieve kosmologische constante. Dit zou ze in staat stellen zowel het ‘elegante’ wiskundige plaatje van de snaartheorie te gebruiken als versnellend uitzettende heelallen produceren.

‘Heelal hyperbolisch op zeer grote schaal’
De wereld om ons heen is onmiskenbaar recht, Euclidisch, met drie dimensies die loodrecht op elkaar staan. Hawkings team denkt echter dat dit op kosmische schaal niet meer klopt en dat op zeer grote schaal er een kronkelig hyperbolische heelal ontstaat. De bedenker van de variant van de snaartheorie waarmee Hawking en de zijnen nu aan de haal gaan is vooralsnog sceptisch. Zo is hun model incompleet en houdt het er geen rekening mee dat bepaalde deeltjes, bijvoorbeeld elektronen en protonen, stabiel moeten zijn. Hij ziet niet in hoe hun afleiding kan worden omgezet in een meer complete theorie. Hertog is optimistischer. Weliswaar is hun werk nog verre van af, maar hij heeft goede hoop dat dit uiteindelijk kan leiden tot een realistische snaartheorie die ons heelal beschrijft.

Bronnen
1 Hartle, Hawking en Hertog, Accelerated Expansion from Negative Λ, ArXiv preprint server (2012)
2 Juan Maldacena, The Large N Limit of Superconformal Field Theories and Supergravity, ArXiv preprint server (1997)
3 Hawkings’ Escher-verse could be Theory of Everything, New Scientist, 2012

Artist impression van een foton. Bestaan er nog meer soorten fotonen dan de tot nu toe bekende soort?

‘Exotische fotonen verantwoordelijk voor steeds snellere uitzetting heelal’

Sinds begin negentiger jaren van vorige eeuw ontdekt werd dat sterrenstelsels zich steeds sneller van ons verwijderen, zitten kosmologen met de handen in het haar. Wat levert de enorme energie ie nodig is om de zwaartekracht te overwinnen? Volgens een nieuwe theorie: magnetisme. Om precies te zijn: twee bizarre typen fotonen die volgens Maxwell’s vier vergelijkingen kunnen bestaan, maar in de klassieke natuurkunde onmogelijk zijn en nog nooit waargenomen zijn…

Artist impression van een foton. Bestaan er nog meer soorten fotonen dan de tot nu toe bekende soort?
Artist impression van een foton. Bestaan er nog meer soorten fotonen dan de tot nu toe bekende soort?

Hardnekkig raadsel
Waar kosmologen vroeger nog geloofden dat ons heelal door de zwaartekracht weer ineen zal storten, weten we nu aan de hand van waarnemingen dat het heelal steeds sneller aan het uitzetten is. Over tientallen miljarden jaren zien onze verre nazaten alleen de Melkweg, dan samengesmolten met het Andromedastelsel, en de andere stelsels van onze lokale Virgo-supercluster. De rest van het heelal raast dan met moordend tempo, schijnbaar hoger dan de lichtsnelheid, van ons weg weg. De populairste verklaring benut Einsteins ooit verfoeide kosmologische constante, lambda. Deze constante levert ongeveer een halve joule energie per kubieke kilometer. Deze constante, donkere energie gedoopt, is wiskundig handig, maar biedt geen fysische verklaring.  Nog erger: de mechanismes die zijn voorgesteld leverden respectievelijk 120 ordes van grootte te hoge waarden (waardoor het heelal onmiddellijk zou instorten tot een zwart gat) of en waarde nul. Sommigen denken aan een afstotende werking van lege ruimte, anderen aan veranderingen in de zwaartekrachtswetten op zeer grote schaal. Elke theorie heeft ernstige nadelen. Twee kosmologen hebben echter een interessant alternatief gevonden. Hierbij maken ze gebruik van een bizarre, tot nu toe massaal genegeerde oplossing van het stelsel van de vier differentiaalvergelijkingen van Maxwell.

Bizarre fotonen
We kennen allemaal de huis- tuin- en keukenvariant van licht. Lichtdeeltjes (fotonen) bestaan uit een trillend elektrisch veld, dat weer een magnetisch veld opwekt, dat weer een (nu tegengesteld) elektrisch veld opwekt etc.

Toen kosmologen Beltrán en Maroto probeerden de donkere energie te verklaren door met de vergelijkingen te spelen ie de virtuele deeltjes in vacuüm beschreven, ontdekten ze iets opvallends. De vergelijkingen leken sprekend op die van elektromagnetisme. Om precies te zijn, op die van de verreweg nauwkeurigste fysische theorie ooit: quantum elektrodynamica (QED). QED heeft een geheimzinnige eigenschap waar natuurkundigen gewoonlijk met een grote boog omheen lopen omdat ze nog nooit zijn waargenomen. QED voorspelt namelijk dat er naast ‘normale’ fotonen, ook twee bizarre fotonen voorkomen die rechtstreeks uit en science fiction boek lijken te komen. In de eerste soort wijst het elektrische veld in de richting van het foton, in plaats van een rechte hoek te maken (zoals met normale fotonen). Dit foton, de longitudinale modus, lijkt dus veel op een soort drukgolf, zoals geluidsgolven of (!) zwaartekrachtsgolven.

De tweede soort, de temporale modus, kent geen magnetisch veld, omdat het niet verandert in de tijd. Het is een golf van pure elektrische potentiaal, een voltage. Er is alleen een probleem met deze fotonen. Ze zijn nog nooit waargenomen. Dus bedachten natuurkundigen een manier om ze te verstoppen. Deze truc heet de Lorenz-ijk. Ze bestaan wel, maar heffen elkaar altijd exact op. In de theorie van Beltrán en Maroto ontbrak deze Lorenz-ijk. De vreemde golven die gewoonlijk worden verboden door de Lorenz-ijk, kwamen even tot leven als virtuele golven in het vacuüm. Tijdens de inflatiefase van het heelal (een extreem snelle uitzetting in een fractie van een seconde) werden deze  kwantumfluctuaties enorm sterk vergroot. Dit veroorzaakte uiteindelijk de dichtheidsverschillen die leidden tot de vorming van melkwegstelsels, aldus de theorie. Zou dit ook gebeurd kunnen zijn met de gewoonlijk ‘verboden’ golven? Dit biedt in ieder geval een verklaring voor de raadselachtige magneetvelden tussen melkwegstelsels die uit het niets lijken te komen. De temporele modi worden zo uitgerekt dat ze niet meer als golven herkenbaar zijn. Hun energie blijft echter. Donkere energie?

Donker magnetisme
Beltrán en Maroto noemen hun idee donker magnetisme. Zeer opmerkelijk: met hun theorie kan ook een waarde voor de ‘kosmologische constante’ gekozen worden die binnen factor tien van de gemeten waarde ligt. Kort na het ontstaan van het heelal vormden de elektromagnetische kracht en de zwakke kernkracht één elektrozwakke kracht. Het uiteenvallen van deze kracht als gevolg van het dalen van de temperatuur  (de elektrozwakke transitie) zou dan de inflatie op gang gebracht kunnen hebben. Als dit inderdaad klopt, zo volgt uit de berekeningen van Beltrán and Maroto,  dan ontstaan temporele modi met een energiedichtheid die dicht bij die van donkere energie ligt. Een enorme verbetering vergeleken met de 120 nullen van voorheen, ook wel de slechtste natuurkundige voorspelling ooit gedoopt.

Extreem sterk zwaartekrachtsveld
Temporele en longitudinale modi kunnen alleen worden opgewekt door een extreem sterk zwaartekrachtsveld, zoals dat rond een zwart gat of het afstotende veld in het inflatietijperk. Dit is ook de reden volgens beide auteurs dat er geen afwijkingen in kwantumelektrodynamica zijn aangetroffen en de theorie extreem nauwkeurig is. We kunnen deze extreem sterke zwaartekrachtvelden niet opwekken in een lab. Wat we wel kunnen is (via de Planck satelliet van de Europese ruimtevaartorganisatie ESA) sporen ontdekken van de polarisatie van de microgolven van kosmische achtergrondstraling, die ons meer kan vertellen over de  timing en verloop van de inflatiefase. Vond de inflatie plaats voordat de elektrozwakke kracht uiteenviel, dan is hiermee aangetoond dat de  donkere magnetisme theorie niet klopt.

Er zijn nog andere methoden om aan extra bewijs te komen. In de verre toekomst zullen er radiotelescopen op honderden miljoenen kilometers afstand van elkaar over het zonnestelsel verspreid zijn. Voldoende ver van elkaar om de extreem grote longitudinale modi waar te nemen. Als inflatie optrad voor de splitsing van de elektromagnetische en zwakke kracht, zouden deze longitudinale golven veel kleiner zijn en ook waarneembaar door een kleinere radiotelescoop, zoals de Square Kilometre Array, over enkele jaren voltooid. Klopt de theorie dat deze exotische fotonen door extreme zwaartekrachtvelden worden opgewekt, dan zijn ook zwarte gaten een bron van golven. Wel zullen deze bijna onzichtbaar zwak zijn. Beltrán and Maroto zijn nu aan het rekenen om tot een toetsbare voorspelling te komen.

Heelal onder hoogspanning
Deze uitrekking van de temporale golven heeft nog een bizar effect. Ons heelal blijkt als het gevolg van de uitzetting onder hoogspanning te staan. Beide kosmologen berekenden dat als hun theorie klopt, ons heelal een spanning kent rond de 1027 ( 1 000 000 000 000 000 000 000 000 000) volt. Ter vergelijking: de hoogste spanning ooit bereikt in een lab zijn enkele tientallen miljoenen volt, een bliksemflits vindt plaatsover een miljard volt. Deze spanning is zo hoog dat zelfs ruimtetijd uit elkaar getrokken wordt, dus als de theorie klopt en als ons heelal met een ander heelal in aanraking komt, zal een allesvernietigende bliksemflits weinig overlaten van ons heelal. Wel komt er dan zoveel energie vrij dat hieruit veel nieuwe materie geschapen wordt. En, wie weet, een nieuw leefbaar heelal ontstaat…

Bron
Jose Beltran Jimenez en Antonio L. Maroto, The Dark Magnetism of the Universe, ArXiv preprint server (2011)

De zaak van de sterren die niet horen te bestaan

Uit de allervroegste beelden van melkwegstelsels, waarvan het licht dat ons nu bereikt vlak na hun ontstaan dateert, blijkt dat ze drie maal zoveel sterren bevatten als verwacht. Astronomen staan voor een raadsel.

De open sterrenhoop Omega Centauri ligt op ongeveer 16.000 lichtjaar van de aarde. Uit recent onderzoek blijken de sterren van de sterrenhoop rond een centrale as te draaien. Een rest van een dwergsterrenstelsel? Bron: NASA, ESA ex. Wikimedia Commons
De open sterrenhoop Omega Centauri ligt op ongeveer 16.000 lichtjaar van de aarde. Uit recent onderzoek blijken de sterren van de sterrenhoop rond een centrale as te draaien. Een rest van een dwergsterrenstelsel? Bron: NASA, ESA ex. Wikimedia Commons

Aantal sterren zwaar onderschat
In dit beeld van de bolvormige sterrenhoop Omega Centauri (vermoedelijk een restant van een door de Melkweg opgeslokt dwergsterrenstelsel), die deel uitmaakt van de Melkweg, zijn heldere, hete sterren blauw gekleurd, zwakke rood. Voor verder weg gelegen sterrenstelels werkt deze methode niet: lichtzwakke sterren zijn onmogelijk te zien.

Nu blijkt dat sommige van de verst weggelegen sterrenstelsels in het universum werkelijk wemelen van de sterren, veel meer dan verwacht. De enige informatie die sterrenstelsels astronomen geven, komt van het licht van hun sterren. Echter: niet alle massa van een sterrenstelsel bevindt zich in hun sterren.

Donkere materie
Sommige massa is opgesloten in onzichtbare donkere materie, die niet direct kan worden waargenomen. Om dit probleem op te lossen, schatten astronomen doorgaans de massa van een sterrenstelsel door in kaart te brengen hoe de sterren ten opzichte van elkaar bewegen. Snel bewegende sterren zijn doorgaans een teken van veel zwaartekrachtswerking, dus van veel massa. Ze vergelijken de hoeveelheid zichtbare massa met de uit de sterbewegingen en -verdeling blijkende massa en nemen aan dat de rest rekenkundig kan worden aangevuld met donkere materie.

“Om precies te schatten wat de massa is die [sterrenstelsels] werkelijk hebben, gebruiken we altijd een bepaalde conversiefactor [IMF – stellar initial mass function – red.],” aldus University of Oxford astronoom Michele Cappellari. “De conversiefactor die we vele decennia hebben gebruikt, blijkt niet te kloppen.” De IMF geeft weer hoe de massaverdeling is van sterren die in sterrenstelsels gevormd worden, m.a.w. hoeveel massa in lichte of juist zware typen sterren gaat zitten. Tot nu toe werd aangenomen dat die verdeling voor ieder type sterrenstelsel gelijk was.

Drie keer teveel sterren
Cappellari ontdekte dat de verhouding tussen zichtbaar licht en stermassa niet hetzelfde is voor alle sterrenstelsels – deze verschilt per type stelsel. De fout was het grootst voor de verst verwijderde sterrenstelsels, waar zich drie keer zoveel sterren in bevonden als hiervoor gedacht. Naar bleek, hadden astronomen de zwakke sterren in deze verre sterrenstelsels niet meegeteld.

Waarmee een nieuw kosmisch raadsel is geschapen. Als we verafgelegen sterrenstelsels zien, zien we ze op een zeer jeugdige leeftijd. De hamvraag: waar kwamen al die vele sterren in deze sterenstelsels vandaan? Cappillari concludeert: “Ze [de sterrenstelsels] moeten sneller groeien dan we tot nu toe dachten.”

Bronnen
Under ‘dark halo’ old galaxies have many more stars, Oxford Universiteit, 2012
Michele Cappellari, Systematic variation of the stellar initial mass function in early-type galaxies, Nature (2012), doi:10.1038/nature10972