Wetenschap

Middeleeuwers waren vaak bang dat ze van de platte aarde af zouden vallen. Nu weten we, een enkele Nigeriaanse islamiet daargelaten, beter.

Protowetenschap of pseudowetenschap?

Wetenschappers zijn, voorzichtig uitgedrukt, niet altijd even lief voor elkaar. Vooral als wetenschappelijke theorieën indruisen tegen wat gebruikelijk is in een bepaalde wetenschappelijke discipline leidt dat vaak tot vervelende gevolgen voor de “ketter”, denk aan ontslag, doodzwijgen of ruïnering van zijn of haar wetenschappelijke carrière.

Middeleeuwers waren vaak bang dat ze van de platte aarde af zouden vallen. Nu weten we, een enkele Nigeriaanse islamiet daargelaten, beter.
Middeleeuwers waren vaak bang dat ze van de platte aarde af zouden vallen. Nu weten we, een enkele Nigeriaanse islamiet daargelaten, beter.

Soms bleek achteraf gezien het afkraken van een grenswetenschapper terecht, denk aan de beruchte charlatan Lysenko.

In veel gevallen bleek de grenswetenschapper achteraf gelijk te hebben: een bekend voorbeeld is Alfred Wegener die vanwege zijn theorie van bewegende continenten werd verketterd door andere geologen, maar nu wordt gezien als de visionaire grondlegger van het moderne continentmodel.

Helaas beschikken we, een enkel medium wellicht daargelaten,  niet over bovennatuurlijke kennis of een tijdmachine.

Hoe maken we onderscheid tussen een fraudeur, een kwakzalver en een onbegrepen grenswetenschapper?

Protowetenschap of pseudowetenschap
Een protowetenschap is een voorloper van wat later een werkelijke wetenschap kan worden. Het kan zijn dat de fenomenen die een protowetenschap bestudeert, achteraf gezien een verklaring hebben die binnen een andere bestaande wetenschap past. In dat geval houdt de protowetenschap op te bestaan.

Het onderscheid tussen een protowetenschap en een echte wetenschap is voornamelijk sociologisch. Een echte wetenschap wordt algemeen erkend door collega’s uit andere wetenschappelijke disciplines. Een protowetenschap is nog volop in ontwikkeling, worstelt voor erkenning (en heel belangrijk voor wetenschappers: onderzoeksbudget en jonge onderzoekers) en kent nog geen formele structuur. Denk hierbij aan een eigen vakvereniging, vaktijdschriften, congressen, vakgroepen, hoogleraarschappen en dergelijke.

Uiteraard vindt iedere grenswetenschapper zich een protowetenschapper en zolang een grenswetenschapper zich aan de wetenschappelijke methode houdt, is hij dat ook. Wat hij ook bestudeert. Helaas zijn er ook veel charlatans die hun onderzoeksresultaten vervalsen of zelfs nauwelijks onderzoek doen dat aan wetenschappelijke principes voldoet. Dit soort mensen – Lysenko kwam al even voorbij en er waren/zijn er meer – zijn pseudowetenschappers.

De wetenschappelijke methode
Serieuze wetenschappers gaan volgens de wetenschappelijke methode te werk. Deze volgt altijd vier stappen.

  1. Waarnemen. Neem waar en probeer voor wat je waarneemt een met de bestaande wetenschappelijke kennis overeenkomende verklaring te vinden.
  2. Hypothese opstellen. Lukt dit niet, ontwikkel dan een testbare (falsificeerbare) hypothese.  Pseudowetenschappers ontwikkelen niet-testbare hypotheses.
  3. Testbare voorspelling doen aan de hand van je hypothese. Doe een via een experiment toetsbare voorspelling aan de hand van je nieuwe hypothese. Pseudowetenschappers doen doorgaans voorspellingen die altijd uitkomen.
  4. Probeer je voorspelling uit. Probeer in een experiment uit of de voorspelling uitkomt.Zo nee, dan kan je hypothese in deze vorm in de prullenbak. Even uithuilen en dan een betere testbare hypothese verzinnen: je bent weer een stapje dichter bij de waarheid gekomen. Pseudowetenschappers gaan nu door met knoeien met de meetopstelling tot ze de uitkomst hebben die hun theorie bevestigt.
  5. Zo ja, uiteraard de droom van iedere wetenschapper: verzin nieuwe voorspellingen om de hypothese nog beter te toetsen en te onderbouwen.

Hoe vaker voorspellingen uitkomen, hoe groter de kans dat je hypothese ook klopt. Eén foute voorspelling daarentegen die niet berust op een meetfout, experimentele fout of logische fout, betekent dat de hypothese in de huidige vorm alsnog de prullenbak in kan.

De hypothese kan misschien bijgeschaafd of moet zelfs radicaal vervangen. Tot die tijd kan je je als wetenschapper koesteren in de warme gloed van je eigen gelijk. Geniet er van, want zo vaak komt dat niet voor. Het komt vaker voor dat Moeder Natuur je af laat gaan, tenminste als je echt grenswetenschappelijk bezig bent in plaats van met het wetenschappelijke equivalent van postzegelverzamelen.

Enkele van Tesla's woestere ideeën inspireren nog steeds grenswetenschappers.
Enkele van Tesla's woestere ideeën inspireren nog steeds grenswetenschappers.

Nog meer kenmerken van protowetenschap versus pseudowetenschap
Uiteraard wil je als buitenstaander ook kunnen beoordelen of een grenswetenschap een proto- of pseudowetenschap is.

Hier een lijstje van kenmerken van pseudowetenschappen.

  1. Heeft het grenswetenschapsveld vooruitgang getoond? (in het geval van pseudowetenschappen: vaak niet)
  2. Gebruikt het grenswetenschapsveld technische woorden als “vibratie” of “energie” zonder de exacte betekenis hiervan te geven?
  3. Betekent het aanvaarden van een grenswetenschappelijke claim dat een experimenteel grondig onderbouwde natuurwet aan de kant moet worden geschoven?
  4. Geven populaire artikelen in het grenswetenschapsveld nauwelijks referenties?
  5. Is er alleen anekdotisch (en geen experimenteel) bewijs?
  6. Beweren de grenswetenschappers dat er dichtgetimmerde experimenten zijn uitgevoerd die de waarheid van de claim bewijzen en dat bedrog uitgesloten is? (dat kan een serieuze wetenschapper per definitie niet doen: experimenten kunnen alleen falsificeren)
  7. Zijn de uitkomsten van experimenten met succes herhaald door andere wetenschappers?
  8. Beweert de grenswetenschapper die de claim doet dat hij overmatig of oneerlijk wordt bekritiseerd?
  9. Wordt de grenswetenschap alleen gedoceerd aan niet- erkende instituten? (dit beslisargument is twijfelachtig)
  10. Zijn de beste teksten in het grenswetenschapsveld tientallen jaren oud?
  11. Noemt de grenswetenschapper criticasters onwetend of bekrompen?
  12. Gebruikt de grenswetenschapper vermeende expertise in andere vakgebieden om zijn claim te ondersteunen?
Zo ziet de Melkweg er denken astronomen van boven uit.

De galactische seriemoordenaar

Elke zesentwintig tot zevenentwintig miljoen jaar vindt er een massale uitstervingsgolf op aarde plaats. Toeval of niet, maar deze frequentie komt redelijk goed overeen met de punten waarmee de zon (en dus de aarde) het verst verwijderd is van het vlak van onze melkweg.

Uitsterfgolven komen elke 26 miljoen jaar voor. Wat is de oorzaak van deze periodieke natuurramp?
Uitsterfgolven komen elke 26 miljoen jaar voor. Wat is de oorzaak van deze periodieke natuurramp?

Vandaar dat tot voor kort veel wetenschappers geloofden dat er een oorzakelijk verband is. Op dit moment overheerst de scepsis in de wetenschappelijke gemeenschap: juist op de punten waar de invloed van de Melkweg het sterkst is, in het galactische vlak, vindt geen uitstervingsgolf plaats. In new-age kringen gelooft men juist dat het feit dat de aarde nu vlak in de buurt is van het galactische vlak zal leiden tot massale spirituele groei of juist een vernietigende ramp. Men vergeet te verklaren hoe het kan dat dat drie miljoen jaar geleden niet gebeurd is (tenzij je de eerste homo erectus als zodanig ziet). Toen bevond de aarde zich namelijk precies in het galactische vlak…

De melkweg als draaimolen
De zon draait met de rest van het zonnestelsel om de kern van de melkweg. Eén rotatie, een galactisch jaar, duurt tweehonderd tot tweehonderdvijftig miljoen jaar. Anders geformuleerd: een kwart galactisch jaar geleden liepen  er nog grote dino’s rond in onze achtertuin (wat Nederland betreft: zwommen er mosasaurussen). De zon blijft niet braaf in het galactische vlak hangen. Natuurkundige berekeningen en astronomische waarnemingen wijzen er samen op dat de zon een soort golfbeweging maakt: drie keer per galactisch jaar duikt de zon onder het galactische vlak en drie keer per jaar staat de zon er juist boven. De beweging van de zon heeft dus veel weg van de beweging van de bekende kermisattractie waarbij bezoekers een op en neer golvende beweging maken terwijl ze ronddraaien. De vraag is dus: wat zorgt er voor dat just op het moment dat de zon het verst verwijderd is van het galactische vlak, er massale uitsterving optreedt?

Ecliptica beschermt tegen kosmische rampen?
We weten uit metingen dat bij het bereiken van elke maximale uitwijking de aarde wordt getroffen door een vernietigende natuurramp. Van de laatste grote uitsterving, de Krijt-Tertair massaextinctie die een einde maakte aan de dino’s, is de Chicxulub meteoriet als dader aangewezen. Ook het hoge gehalte aan iridium in de Krijt-Tertair grenslaag in gesteente wijst erop dat er een buitenaardse boosdoener verantwoordelijk was. Er zijn in de loop der jaren verschillende theorieën ontwikkeld om te verklaren hoe de positie van de zon ver uit het galactische vlak tot uitstervingen kan leiden.

Zo ziet de Melkweg er denken astronomen van boven uit.
Zo ziet de Melkweg er denken astronomen van boven uit.

1. Oortwolk wordt gedestabiliseerd door grote afstand van de galactische schijf – Volgens deze theorie zorgt op een gegeven moment de grote afstand van het zonnestelsel tot de galactische schijf er voor dat de omloopbanen van de brokken puin in de Oortwolk instabiel worden. Het vlak van het zonnestelsel staat voor een groot deel (62 graden)  recht op het vlak van de melkweg, waardoor  de aantrekkingskracht van de Melkweg de omloopbanen uit evenwicht brengt. Het gevolg: sommige brokken belanden in de binnenste regio’s van het zonnestelsel met uiteindelijk akelige gevolgen voor het leven op aarde. Pre: een duidelijk werkingsmechanisme. Nadeel: de uitsterfpieken zouden in dit geval onregelmatiger moeten zijn dan nu.

2. Verhoogde kosmische straling leidt tot massale uitstervingen – Volgens sommige onderzoekers is het onjuist om meteorietinslagen of vulkaanuitbarstingen alleen de schuld te geven van de massale uitsterfgolven. Zij denken dat op een of andere manier het galactische vlak ons beschermt tegen de heftige straling aan de randen van de galactische schijf – tot het zonnestelsel zich aan de rand van de galactische schijf bevindt. Inderdaad weten we uit recent onderzoek dat interstellair gas en stof veel gammastraling wegvangt. Volgens andere theorieën is de extreem krachtige kosmische straling die we soms meten afkomstig van geladen deeltjes die door het galactische magnetische veld rond de schijf van de Melkweg worden gejaagd. Als de aarde zich in de baan hiervan bevindt, is het voorstelbaar dat dit erg nare gevolgen heeft voor de meeste levende wezens. Hoewel dit de regelmaat mooi verklaart, pleit hier tegen dat in principe de atmosfeer en het aardmagnetisch veld – om niet te spreken over de heliosfeer, het zonnemagnetisch veld en invloedssfeer van de zon – goed beschermen tegen kosmische straling.

De Krabnevel. Duizend jaar geleden stond hier nog een enkele ster.

`Krabnevel krachtigste energiebron in universum`

In de Krabnevel is een nieuw, extreem energierijk proces ontdekt. Elektronen worden versneld tot duizend maal de energie die we in onze beste deeltjesversneller kunnen opwekken. De flitsen duren erg kort, enkele dagen. Dus moet een proces in heel korte tijd extreem veel energie in de elektronen pompen. Op dit moment zijn er geen astrofysische mechanismen bekend die dit proces kunnen verklaren. Nieuwe natuurkunde?

Krabnevel ontstond uit supernova
In het jaar 1054 vlamde een nieuwe ster aan de hemel op. Europa leefde in die tijd in de donkere, door oorlogen en armoede geteisterde middeleeuwen en mensen hadden wel wat anders aan hun hoofd dan de sterrenhemel in de gaten houden.

De Krabnevel. Duizend jaar geleden stond hier nog een enkele ster.
De Krabnevel. Duizend jaar geleden stond hier nog een enkele ster.

Chinese en Arabische astronomen namen de nieuwe ster in het sterrenbeeld Stier wel waar en beschreven deze gebeurtenis in hun annalen.

Na een paar weken was de supernova – want dat was het – niet meer zichtbaar met het blote oog.

In de bijna duizend jaar na de explosie heeft de gaswolk van de supernova zich uitgebreid tot wat we nu kennen als de Krabnevel.

Pulsars: kosmische vuurtorens
In de Krabnevel bevindt zich ook een van de eerst ontdekte snel ronddraaiende neutronensterrenpulsars – zeer snel ronddraaiende bollen massief  opeengepakte neutronen. De Krabnevelpulsar pulseert elke 0,033 seconden.

Wat zijn neutronensterren en pulsars?

Neutronensterren ontstaan als een heel zware ster uit is gebrand en door de zwaartekracht wordt samengeperst tot een neutronenster. Alle sterren draaien: de zon bijvoorbeeld een keer per maand. Als een ster van miljoenen kilometers doorsnede wordt samengeperst in een klein bolletje zoals een neutronenster, moet de rotatiesnelheid met miljoenen malen toenemen om de hoeveelheid rotatie-energie gelijk te houden. Eén rotatie per maand wordt dan honderden rotaties per seconde.

Een pulsar is een zeer snel, regelmatig röntgensignaal waarvan astronomen denken dat het een snelle rondtollende neutronenster is. Een neutronenster bevat enkele zonsmassa’s samengepakt in een bol met een doorsnede van tien tot vijftien kilometer. De dichtheid van neutronensterren is extreem groot: een suikerklontje neutronenster weegt vermoedelijk evenveel als alle mensen bij elkaar.

We weten van het bestaan van pulsars omdat ze door hun snelle rotatie extreem krachtige magnetische velden opwekken. Deze magnetische velden bewegen door de snelle rotatie – bij sommige pulsars duizendsten van seconden – zeer snel.

Een snel veranderend magnetisch veld wekt altijd een sterk elektrisch veld op. Een fietsdynamo werkt op dit principe. De beweging van de magneet wekt stroom op en laat het fietslampje branden.

Een pulsar is als het ware een reuzendynamo. Het gevolg: elektronen worden in dit sterke elektrische veld opgezwiept tot bijna de lichtsnelheid. Zodra de elektronen op een atoom botsen, dumpen ze hun energie als bundel r̦ntgen- en gammastraling Рdie we waar kunnen nemen als deze over de aarde zwiept.
Pulsars zijn extreem regelmatig – astronomen dachten zelfs even dat het signalen van een buitenaardse intelligentie waren. Sommige pulsars zijn even nauwkeurig als atoomklokken.

Enorme energieuitbarstingen
De pulsar produceert gewoonlijk al enorm veel energie – de Krabnevel zendt 75.000 maal zoveel energie uit als de zon.

Waarnemingen met de Chandra satelliet laten een enorme draaikolk rond de neutronenster zien. Verklaart dit misschien de flares?
Waarnemingen met de Chandra satelliet laten een enorme draaikolk rond de neutronenster zien. Verklaart dit misschien de flares?

Af en toe vlamt de pulsar, zo blijkt, nog veel feller op. Omdat de flitsen zo kort duren denken astronomen aan synchrotronstraling (straling die vrij komt als geladen deeltjes, elektronen dus, worden afgebogen) en wel van extreem energierijke elektronen.

Schattingen wijzen uit dat deze elektronen duizend keer zoveel energie  hebben als wat wij in de LHC op kunnen wekken. De flitsen duren erg kort, enkele dagen. Dus moet een proces in heel korte tijd extreem veel energie in de elektronen pompen. Op dit moment zijn er geen astrofysische mechanismen bekend die dit proces kunnen verklaren. Nieuwe natuurkunde? Of is een creatieve herinterpretatie van de bestaande theorie mogelijk?

De aminozuurverdeling in materiaal van biologische oorsprong wijkt sterk af van die in materiaal van anorganische oorsprong.

Universele chemische handtekening leven ontdekt

Leven met een aardse biochemie ontdekken is niet zo moeilijk. Er zijn bepaalde moleculen, denk aan het suikermolecuul glucose, die alleen in aardse organismen voorkomen. Maar hoe bepaal je of die veelbelovende borrelende moddervulkaan op een verre exoplaneet wordt veroorzaakt door een anorganisch proces of toch door leven met een totaal andere chemie dan dat op aarde? De Californische biochemicus Evan Dorn en zijn team vonden een methode, een chemische handtekening van het leven..

Meercellig leven op een gasreus heeft mogelijk veel weg van een ballon.

Buitenaards leven: zoeken naar een spook
Buitenaards leven kan net als het aardse leven op DNA gebaseerd zijn.
Het is alleen zeer de vraag of dat de enig denkbare mogelijkheid is. Zo is ons zonnestelsel extreem rijk aan zuurstof. Misschien dat er op andere planeten planten voorkomen die geen zuurstof uitstoten maar chloor (wat in theorie meer energie oplevert). Op zeer koude planeten komt er misschien leven voor dat niet in water zwemt maar in vloeibaar methaan of ammoniak. Misschien bestaan er levende rotsen, bestaande uit siliciumverbindingen die extreem traag leven en bewegen. Of, op een Io-achtige wereld, is zwavel het elixir van het leven.

De handtekening van het leven
Dorn en zijn team vergeleken buitenaardse bronnen van aminozuren (koolstofchondrieten, koolstofrijke meteorieten) met synthetisch geproduceerde en door aardse organismen geleverde mengsels van aminozuren. Aminozuren zijn de bouwstenen van eiwitten. Het bleek dat in de twee mengsels van anorganische oorsprong de verdeling van aminozuren exact gelijk is aan wat op grond van thermodynamische overwegingen verondersteld mag worden. Hoe meer energie het kost een bepaald aminozuur te maken, hoe minder het voorkomt. In organische mengsels wijkt de verdeling sterk af van het thermodynamisch verwachtte mengsel.

handtekening van het leven
De aminozuurverdeling is heel anders bij levende organismen, dan bij anorganisch ontstane aminozuren. Bron: [1]
Handtekening blijkt universeel

Het zou kunnen dat dit effect alleen bij leven met een aardse biochemie optreedt. Dus nam Dorn een tweede proef, deze keer met computergesimuleerd leven. Avida is een simulatiemodel waarin uit elementaire bouwstenen bestaand kunstmatig leven instructies uitvoert. Reeksen, ‘moleculen’, met de juiste instructies kunnen zichzelf kopiëren. Hierbij putten ze uit de voorraad rondzwervende bouwstenen. Dorn mat de frequenties waarin bouwstenen voorkwamen voordat en nadat evolutie was opgetreden.

De frequenties bleken na de evolutie sterk af te wijken van de ‘normale’ frequenties. Bepaalde ‘moleculen’ werden door het Avidaanse leven veel vaker opgenomen dan andere. Kortom: het lijkt hier te gaan om een universele eigenschap van leven. Leven zorgt er op de een of andere manier altijd voor dat chemicaliën in een andere verhouding voorkomen dan volgens thermodynamische berekeningen te verwachten is. Kortom: er is een duidelijek handtekening van het leven te ontdekken.

Op zoek naar planeten met leven
We kunnen nu in principe in de atmosfeer van planeten op vele lichtjaren afstand ontdekken of er leven voorkomt. We hoeven slechts te letten op de relatieve sterkte van het spectrumsignaal voor bepaalde stoffen. Wijkt deze sterk af van wat te verwachten is op een anorganische wereld, dan is dit een definitief bewijs dat deze wereld leven bevat. Of het nu om een chloor-ademende kwal gaat, een zwaveletende schimmel of toch een op koolstof gebaseerde levensvorm, de methode werkt in principe op iedere op scheikunde gebaseerde levensvorm.

Bron

ArXiv

De zonnevlam van vijf december 2006 was buitengewoon fel en spectaculair.

Donkere materie en zonnevlammen

Het was een van de ontdekkingen die in 2010 natuurkundigen flink hoofdpijn bezorgden. Efraim Fischbach, onderzoeker aan Purdue Universiteit ontdekte op toevallige wijze iets wat tot nu toe door natuurkundigen als ketterij werd beschouwd: de radioactieve vervalsnelheid is niet altijd constant.

Uit onderzoek blijkt namelijk dat bepaalde radioactieve isotopen (silicium-32 en radium-226, het getal achter het streepje geeft het totale aantal kerndeeltjes aan)  in de winter tienden van procenten sneller uit elkaar vallen dan in de zomer, m.a.w. hun halfwaardetijd in de winter is korter dan in de zomer. Fischbach verklaart dat uit de kleinere afstand tot de zon in de noordelijke winter (147 miljoen kilometer vergeleken met 152 in de noordelijke zomer waardoor naar schatting 3% meer zonneneutrino’s de aarde raken in januari dan in juli).

Volgens de bestaande natuurkundige theorieën beïnvloeden neutrino’s de genoemde reacties niet. Alleen de kans dat een atoomkern uit elkaar valt is bekend. Dit wordt de halfwaardetijd genoemd: de tijd waarin de helft van de atoomkernen uit elkaar gevallen is. Na twee keer de halfwaardetijd is driekwart uit elkaar gevallen enzovoort. Van zeer radioactieve stoffen is de halfwaardetijd een fractie van een seconde, van de vrij stabiele isotopen uranium-238 en thorium-232 bedraagt deze miljarden jaren.

Zonnevlammen na dalen radioactiviteit
Dertien december 2006 werd een tweede aanwijzing gevonden toen de vervalsnelheid van de kortlevende isotoop mangaan-54 anderhalve dag voor het begin van een zonnevlam tot tijdens de zonnevlam, met tienden van procenten daalde. Het effect bleek onafhankelijk van de stand van de zon.

De zonnevlam van vijf december 2006 was buitengewoon fel en spectaculair.
De zonnevlam van vijf december 2006 was buitengewoon fel en spectaculair.

Een kilometer onder de Italiaanse granietberg Gran Sasso vindt het donkere-materie detectie-experiment DAMA plaats. In honderd kilo natrium-titaanjodide, een zout, wordt het aantal radioactieve reacties gemeten. Hier bleek in januari het aantal radioactieve reacties lager te liggen dan in juni. Wat zorgt er voor dat de hoeveelheid radioactieve reacties in de zomer hoger is dan in de winter?

Donkere materie
Volgens de meeste astronomen hangt er een onzichtbare halo donkere materie rond het melkwegstelsel. Deze halo bevat veel meer massa dan de zichtbare materie en verklaart waarom sterren vlak bij het galactisch centrum nauwelijks sneller ronddraaien dan sterren verder van het centrum.

De zon draait in ongeveer 225-250 miljoen jaar rond de kern van de melkweg. Op dit moment beweegt de zon met 220 km/s  in de richting van de ster Wega in het sterrenbeeld Hercules. De omloopbaan van de aarde maakt een hoek van rond de zestig graden met de omloopbaan van de zon rond de melkweg. In juni beweegt de aarde het meest in de richting van Wega en veegt dan de meeste donkere materie op. In januari beweegt de aarde juist het meest tegen de beweging van de zon in waardoor minder donkere materie wordt geschept.

Vermindert donkere materie bepaalde vormen van radioactiviteit?
Het is niet logisch dat een kortere afstand tot de zon leidt tot een verhoogde radioactiviteit. Dit is ook ontkracht door metingen aan de plutoniumreactor aan boord van de ruimtesonde Cassini die nu Saturnus fotografeert: de radioactiviteit bleek niet verminderd ook op grote afstand van de zon. De correlatie met DAMA spreekt echter een heel andere taal. Toevallig stemmen de punten waarop de aarde maximaal tegen de galactische draairichting in beweegt en de zon het dichtst nadert, redelijk nauwkeurig overeen.

Volgens sommige modellen is donkere materie oneffen verdeeld. Het is mogelijk dat een zeer snel bewegende wolk donkere materie van enkele  astronomische eenheden groot zorgde voor zowel magnetische explosies op de zon (door thermonucleaire reacties in de fotosfeer te verstoren) als een vermindering van de radioactiviteit op aarde.

Een generatieschip is eeuwen onderweg. Generaties worden onderweg geboren en sterven.

Reizen naar andere sterren pas mogelijk in 2200?

Volgens een wetenschappelijke studie die uitgaat van ons vermogen om energie op te wekken, zullen we pas begin drieëntwintigste eeuw voldoende vermogen hebben om een verkenningsschip richting Alfa Centauri, onze dichtsbijzijnde buur, te sturen. De vraag: hebben deze onderzoekers wel gelijk?

Ruimtevaart slurpt energie
Ruimtereizen kosten ontstellend veel energie. Om een voorbeeld te geven: de Apollo-11 missie die de eerste mensen naar de maan bracht, kostte alleen aan brandstof al drie miljoen kilo kerosine, vloeibare zuurstof en waterstof. Alhoewel door bijvoorbeeld gebruik te maken van ruimteliften en zonnezeilen het prijskaartje behoorlijk omlaag kan, blijven de enorme negatieve zwaartekrachtspotentialen van de aarde en de zon energievreters. Ter illustratie: het kost 62 megajoule, dat is zeventien kilowattuur, om een kilogram op het aardoppervlak uit de greep van de aarde te krijgen. Zelfs een Amerikaanse familie doet daar een dag mee (een Nederlandse twee dagen).

Dat is nog weinig vergeleken met wat ontsnappen aan de zon kost: 886 megajoule per kilo vanaf de omloopbaan van de aarde. Ongeveer het daggebruik van eco-goeroe Al Gore. Wel kan energie afgesnoept worden door langs andere planeten te vliegen en slimme ruimtevaarttechneuten doen dat ook om zo hun ruimteverkenners gratis naar de verre, ijzige buitenplaneten te kunnen sturen.

Omdat de afstanden tussen sterren enorm zijn: zelfs het licht doet meer dan vier jaar over de reis naar buurster Alfa Centauri, moeten ruimteschepen zeer snel kunnen reizen, denk aan procenten van de lichtsnelheid. Een ander alternatief is een generatieschip: een enorm ruimtedorp waarin de nakomelingen van de vertrekkende astronauten aankomen bij de buurster. Beide alternatieven vreten uiteraard energie, om even een indruk te geven: willen we een ruimtescheepje met een massa van tien ton (stel je voor dat je daar veertig jaar in moet doorbrengen…) met een tiende van de lichtsnelheid naar Alfa Centauri sturen, dan kost dat evenveel energie als de hele wereld in een jaar verbruikt. Een beetje moeilijk uit te voeren dus als we de verheven klimaatdoelstellingen van voornoemde meneer Gore willen halen. En dan komt het volgende probleem. Afremmen. Dat kost net zo veel brandstof en energie als versnellen.

Een generatieschip is eeuwen onderweg. Generaties worden onderweg geboren en sterven.
Een generatieschip is eeuwen onderweg. Generaties worden onderweg geboren en sterven.

Een snel schip kent nog als extra nadeel dat bij snelheden in de buurt van de lichtsnelheid minuscule ruimtestofjes veranderen in dodelijke projectielen, dus moeten zware beschermende schilden mee worden gesleept. We kunnen natuurlijk een langzame robotverkenner sturen. Zo zal over tachtigduizend jaar Pioneer 11 vier lichtjaar hebben overbrugd. Tachtigduizend jaar is alleen wel erg lang. Misschien bestaat de mens dan niet eens meer.

Gezocht: mega-energiebron
Kortom: alleen als we onze energieproductie kunnen verveelvoudigen, kunnen we (als we ons braaf aan Einsteins relativiteitstheorie houden, althans) ontsnappen aan het zonnestelsel. De groei van de omvang van onze economie staat ruwweg gelijk aan de groei van het energieverbruik: enkele procenten per jaar. In dat tempo bereiken we Kardashev-I (het punt dat we alle aardse energiebronnen kunnen benutten, denk aan zonnepanelen op iedere vierkante centimeter aarde oid) pas rond 2400.
Marc Millis, ex-hoofd van de NASA-denktank voor interstellaire ruimtevaart en oprichter van de Tau Zero Foundation met hetzelfde doel, denkt daarom dat pas over tweehonderd jaar de eerste robots Alfa Centauri bereiken. Pas dan is onze energieproductie duizenden malen groter dan nu en wordt het peanuts om een ruimteschip voldoende te versnellen. 

Maar… klopt Millis’ verhaal wel?
Millis weet duidelijk waar hij over praat. De man heeft de afgelopen twintig jaar niets anders gedaan dan inventieve manieren bedenken en speculatieve ideeën van anderen beoordeeld om te ontsnappen aan het zonnestelsel. Iedereen kan met middelbare-school natuurkundekennis, op een middelbare-school zakjapannertje narekenen dat de getallen die hij geeft kloppen.
De vraag is alleen of zijn aannames wel kloppen.

Om te beginnen: de grootte. We kunnen nu al met atomen slepen. Over niet al te lange tijd kunnen we in een zeer klein ruimtescheepje van misschien honderd kilo atoom voor atoom alle apparatuur proppen die nodig is om de onderzoeken te verrichten. Versnellen doen we hier op aarde voor een groot deel met een laser zodat er minder brandstof meehoeft: überhaupt is een geladen vortex of soliton die de baan rond het ruimtescheepje schoonveegt nuttig. We kunnen met het ruimteschip een Von Neumann-machine sturen die een stuk ruimtepuin rond Alfa Centauri ombouwt tot redelijk goede waarnemingsapparatuur. Misschien zelfs wel uit bevruchte menselijke eicellen een complete nieuwe menselijke kolonie laat groeien.

Ook is het de vraag of afremmen inderdaad wel zoveel energie kost als Millis denkt. De interstellaire ruimte is gevuld met ijl gas en geladen deeltjes. Schakel een groot magnetisch schepveld in, bijvoorbeeld door op een gegeven moment de wrijving te gebruiken om het schip te laten roteren, en remming is een feit. En heeft Einstein wel het laatste woord over sneller-dan-licht reizen? Ook daar denken sommige theoretisch-fysici heel anders over

Flower power: vrede is in de vijandige ruimte letterlijk van levensbelang.

Leven in ruimtekolonie beste opvoedcursus mens

In de ruimte krijg je niets cadeau. Niemand ruimt je afval of rommel op. Letterlijk voor elke gram zuurstof, water, voedsel en energie moet hard gewerkt worden. Samenwerken is letterlijk van levensbelang, want door de ingewikkelde technische systemen en de dodelijke omgeving kan je alleen niet overleven. En betekent een conflict al gauw de dood voor iedereen. Cradle to cradle is geen morele keuze, maar bittere noodzaak.

De dodelijke ruimte
Er is in het zonnestelsel buiten de aarde geen plaats te vinden waar de mens het zonder ruimtepak langer dan een paar minuten volhoudt. De plek die misschien nog het meest in de buurt komt van een comfortabele leefomgeving is vijftig kilometer boven het oppervlak van Venus. Aardse temperaturen, zwaartekracht en luchtdruk en een dikke beschermende atmosferische deken bieden veel comfort. Helaas is er op die hoogte geen vast oppervlak en bestaat de atmosfeer uit de onadembare kooldioxide en zwavelzuur.

Alle afval die je in het gesloten systeem van een ruimtestation weggooit kom je eerder vroeg dan laat weer tegen.
Alle afval die je in het gesloten systeem van een ruimtestation weggooit kom je eerder vroeg dan laat weer tegen.

Mars, een goede nummer twee, kent weliswaar een vaste bodem en een voor kosmische begrippen gastvrij Antarctisch klimaat, maar met tien millibar nauwelijks atmosfeer (die overigens ook onadembaar is) en een slechte bescherming tegen dodelijke straling. En deze twee plaatsen zijn nog de vakantieparadijzen van het zonnestelsel: op het oppervlak van Venus smelt lood, op Jupitermaan Io overlijd je binnen een uur aan stralingsziekte en op Neptunusmaan Triton komen fonteinen van vloeibaar stikstof voor.

De ruimtebasis: gedwongen extreem ecofascisme
Kortom: de enige manier om buiten de aarde te overleven is dus in een beschermde, afgesloten structuur met een aarde-achtige atmosfeer.
Zwevend boven Venus is een vrij dunne wand genoeg, maar op Mars en onaangenamere plaatsen is een drukkoepel absoluut essentieel. Er groeit niets, water is schaars en elke gram zuurstof moet kunstmatig geproduceerd worden. Grondstoffen kunnen alleen tegen extreem hoge kosten van de aarde ingevlogen worden (denk aan tienduizenden euro’s per kilo) en de lokaal beschikbare grondstoffen (Venus: kooldioxide en zwavelzuur, Mars kent zeer zout water, kooldioxide, heel veel ijzer en wat andere metalen) zijn niet makkelijk te verwerken. Kortom: recyclen, consuminderen en cradle-to-cradle op een manier waar zelfs de meest fanatieke eco-activist voor terug zou schrikken, zijn geen principiële keuze, maar domweg bittere noodzaak.

Sociaal gevoel en broederschap in de ruimte

Flower power: vrede is in de vijandige ruimte letterlijk van levensbelang.
Flower power: vrede is in de vijandige ruimte letterlijk van levensbelang.
Op aarde kan je als je jezelf onmogelijk hebt gemaakt in de groep verhuizen naar een andere stad of zelfs land.
In een kleine ruimtekolonie kan je dat vergeten. De dichtstbijzijnde mensen bevinden zich op miljoenen kilometers afstand verwijderd. Wachten op een antwoord van de aarde kost vanaf Venus, Mars of verder enkele minuten tot vele uren. Het eerstkomende bezoek is over vijf jaar als je geluk hebt.
Kortom: je kan maar beter leren heel goede vrienden te worden en te blijven met de mensen in je omgeving, want als je iemand beledigt of op zijn of haar ziel trapt, zit je morgen en waarschijnlijk de rest van je leven met de gevolgen als je het niet goedmaakt.

Vrede of de dood
Het is ook een heel slecht idee ruzie te zoeken met andere ruimtekolonies. Ten eerste zijn ze de enige hulp in de buurt als er een systeem uitvalt. Hulp vanuit de aarde is maanden of zelfs jaren onderweg. Eén welgemikt brokstuk dat met kilometers per seconde inslaat in je ruimtekolonie, een sabotageactie in het leefsysteem of in omloop brengen van een dodelijke microbe heeft akelige gevolgen. Kortom: vrede zal de norm zijn en agressieve of gewelddadige groepen zullen snel uitgeschakeld worden door andere ruimtekolonies omdat het risico van hun voortbestaan veel te groot is.

Kortom: er is geen betere manier om zelfs de ergste ruziezoekende slons in een sociale, milieubewuste wereldburger te veranderen dan een paar jaar in de onherbergzame ruimte te wonen.

Zo zou de maan er geterraformeerd uitzien. Als er iemand zo krankzinnig is het te doen...

Stad op de maan

De maan is het enige hemellichaam dat door de mens is bezocht en anno 2011 ook de enige buitenaardse plek waarvoor concrete koloniseringsplannen in voorbereiding zijn. Een basis op de maan heeft enkele grote voordelen. De maan is naar kosmische maatstaven zeer dichtbij. Enkele op aarde vrij schaarse metalen komen op de maan veel voor. Het vacuüm is beter dan in de beste vacuümkamer en het licht doet er maar 1,3 seconde over om de afstand te overbruggen. Wel ontkom je als maanbewoner niet aan zware lichamelijke oefeningen…

Maan factsheet

Grootte: 3500 km doorsnede (een kwart van de aarde)

Zwaartekracht: 0,16 maal die van de aarde

Atmosfeer: vrijwel geen; zonnewind

Temperaturen: gemiddeld +107 (dag) tot -153 (nacht)

Daglengte: 29 dagen (tidally locked)

Lengte jaar: 365,25 dagen (satelliet aarde)

Waardevolle grondstoffen: helium-3, zeldzame aardmetalen, thorium

Pluspunten: nabijheid aarde, lage zwaartekracht, vacuüm, geologisch stabiel

Gevaren: kosmische straling, meteorieten, hoge temperatuursverschillen, botontkalking door lage zwaartekracht

De omgeving

De maan is overdekt met lage, ronde heuvels en vele kraters. Grote lavavlaktes, de maria of zeeën, domineren het voor ons zichtbare halfrond. Aan de andere, voor ons onzichtbare kant bevat de maan veel meer kraters.

Het maanlandschap: glooiende heuvels en bergen met veel kraters
Het maanlandschap: glooiende heuvels en bergen met veel kraters

Hoe kom je er?

De maan ligt ruim binnen het bereik van bestaande raketten. De Apollo-missies bereikten de maan in enkele dagen. Met de bouw van een ruimtelift zouden de reiskosten behoorlijk sterk dalen.

Hoe bewoonbaar is de maan?

Een ruimtepak onder druk, bescherming tegen de felle zonnewind en kosmische straling zijn absoluut vereist. Zonder ruimtepak houdt een mens het ongeveer een minuut uit op het maanoppervlak. De maan is kurkdroog, al zijn in enkele kraters op de noordpool van de maan ijsafzettingen, de overblijfsels van ijsmeteorieten, aangetroffen. Deze liggen in de eeuwige schaduw waardoor ze in de loop van miljarden jaren niet zijn verdampt. Erg veel is dit niet, in totaal ongeveer zeshonderd miljoen ton (honderd liter per aardbewoner). De zwaartekracht is op lange termijn waarschijnlijk te laag voor het menselijk lichaam.Een maanbasis zal dus een centrifuge moeten bevatten waarin de bewoners tijdens hun slaap aardse g-krachten ondervinden.

Wat zijn de voordelen ?

Voor industriële productie is de maan ideaal: lage zwaartekracht, vacuüm en geen klagende omwonenden. Ook als plek om astronomische waarnemingen te doen is de achterkant van de maan ideaal: dicht bij de aarde en door duizenden kilometers rots afgeschermd van het lawaai van aardse radiozenders.De oppervlakte van de maan bevat waarschijnlijk redelijk veel helium-3, een op aarde zeer schaarse vorm van helium die, denkt men, kernfusiereactors aan kan drijven.

Gevaren op de maan

De maan kent geen beschermend magnetisch veld of atmosfeer. Micrometeorieten hebben een grotere bewegingsenergie dan kogels. Kent je ruimtepak of ruimtestation een lek en kan je dat niet dichten, dan ben je ten dode opgeschreven.

Hoe zou een kolonie op de maan er uit zien?

Zo kan volgens NASA een maanbasis er uitzien.
Zo kan volgens NASA een maanbasis er uitzien.

Het goedkoopste is om zoveel mogelijk gebruik te maken van materiaal van de maan zelf. Zelfs het irritante maanstof blijkt achteraf gezien toch erg nuttig: onderzoekers zijn er in geslaagd om maanbeton te produceren door het verhitten en zo laten samensinteren van maanstof. Om voldoende  kosmische straling tegen te houden moeten de muren enkele meters dik zijn (of de basis ondergronds worden aangelegd). Japan heeft al plannen ontwikkeld om een robot te sturen die begint met het aanleggen van een maanbasis.

 

Hoe is de maan tot leefbare wereld om te bouwen?

De gemiddelde temperatuur is te hoog en de zwaartekracht van de maan te zwak om lang zuurstof en stikstof vast te houden. De maan heeft geen magnetisch veld, waardoor de zonnewind korte metten maakt met de atmosfeer. Als de maan op dit moment een zuurstof-stikstofatmosfeer zou hebben zo dik als die van de aarde, dan zou daar na verloop van tijd niet veel meer van over zijn. In theorie kan de atmosfeer continu aangevuld worden van buiten, maar de vraag is of dat slim is als je die atmosfeer ook kan gebruiken om ruimtestations mee te vullen.

Zo zou de maan er geterraformeerd uitzien. Als er iemand zo krankzinnig is het te doen...
Zo zou de maan er geterraformeerd uitzien. Als er iemand zo krankzinnig is het te doen...
Door de extreem hoge snelheid worden afdalende ruimteschepen omringd door plasma.

Plasmawolk als antenne

Met een opmerkelijk slim idee hebben Russische ontwerpers een netelig probleem opgelost voor in de atmosfeer terugkerende extreem snelle ruimteschepen. Gebruik het lastige plasma dat ontstaat als de extreem snelle ruimteschepen de atmosfeer binnen zeilen zelf als radio-antenne.

Verstikkende plasmadeken smoort radioverkeer
Bij zeer hoge snelheden ontstaan door de wrijving in de luchtlaag rond het ruimteschip enorm hoge temperaturen. Temperaturen waarbij materie uit elkaar valt in plasma: een mengsel van atoomkernen, ionen en elektronen.

Door de extreem hoge snelheid worden afdalende ruimteschepen omringd door plasma.
Door de extreem hoge snelheid worden afdalende ruimteschepen omringd door plasma.

Slecht nieuws voor radiocommunicatie, want dit mengsel geleidt stroom, waardoor het werkt als een zogeheten Kooi van Faraday die radioverkeer van en naar het ruimteschip blokkeert. Als gevolg hiervan is er geen radiocontact tijdens de gevaarlijke afdaling van een ruimteschip in de atmosfeer. Gaat er wat mis tijdens de afdaling, dan kunnen hulpverleners en dergelijke niet op tijd gewaarschuwd worden.Er zijn twee methodes geprobeerd om de smorende plasmadeken te ontwijken. Zeer lage-frequentie radiogolven (ELF) werken in principe, maar er kan door de lage frequentie maar weinig informatie verstuurd worden. Een tweede oplossing is een antenne tot buiten het gloeiende plasma steken, maar ook hier blijft door de wrijving al snel weinig van over. Kortom: weinig visionaire lapmiddelen.

Vijand wordt vriend
Aleksandr Korotkevich aan het Landau Instituut voor theoretische natuurkunde in Moskou en zijn team hebben nu een slimmere oplossing gevonden. Plasma’s absorberen namelijk bepaalde radiofrequenties, afhankelijk van de dichtheid van het plasma. Door het absorberen ontstaat er een resonerend veld in het plasma. Helaas geldt ook voor dit resonerende veld dat de signalen niet tot het ruimteschip zelf kunnen reizen. De slimme vondst van Korotkevich en zijn team bestaat uit het uitzenden van golven door het ruimteschip zelf. Deze worden teruggekaatst door het plasma, gemoduleerd (beïnvloed) door het resonerende veld. Omgekeerd kan ook: een zendsignaal vanuit het schip wordt als echo uitgezonden door het resonerende plasmaveld. Weliswaar zijn deze signalen veel zwakker dan het oorspronkelijke signaal, maar dat is volgens Korotkevich niet zo erg: de ontvangers op de grond kunnen veel gevoeliger worden gemaakt dan nu.

Dit idee in de praktijk brengen kent nog heel wat haken en ogen. Ook zijn sommige onderzoekers bang dat het door het manipuleren van het plasma bijvoorbeeld een explosie ontstaat waardoor het ruimteschip in de problemen kan komen. Een wat pessimistische kijk, misschien zou je door radiogolven op slimme manieren te sturen, zelfs het plasma de gewenste vorm kunnen geven zodat de afdaling gunstiger (met meer energieverlies) verloopt.

Onze geest in een robot plaatsen is volgens Kurzweil de definitieve oplossing voor het ultieme probleem: de dood.

Robots in de zorg: onvermijdelijk

Veelbelovend nieuws uit Duitsland: binnen enkele jaren zal een robot genaamd Casero in staat zijn bejaarden te verzorgen. Het gaat dan nog vooral om taken die kracht vergen, zoals het verplaatsen van zware spullen. Voor de meer menselijke taken zullen we nog even moeten wachten op de Care-O-Bot 3.

Gevoelig

De zorg is een behoorlijk gevoelig onderwerp. Anders dan met zaken als Defensie, zijn mensen van mening dat menselijke eigenschappen als emoties belangrijke kenmerken zijn voor het personeel.

Voor mensen is het belangrijk dat zij de warmte van een menselijke medewerker voelen. Dat zij een verzorger hebben die grapjes kan maken, en dat die verzorger daarbij zelf ook geen stalen plaat als gezicht houdt.

Onmisbaar

Wat dat betreft is menselijkheid in de zorg onmisbaar. Wat ook onmisbaar is in de zorg is voldoende arbeidskracht.

Deze arbeidskracht kan echter niet alleen geleverd worden door mensen. Althans, het zal niet mogelijk zijn de benodigde arbeidskracht te blijven leveren door mensen. Met de komende vergrijzing en de leegloop in vele gebieden van Nederland zal het onmogelijk zijn de zorg alleen door mensen te laten gebeuren.

Demografische ontwikkelingen

Binnen enkele decennia zal Nederland te maken krijgen met onder meer:

  • Een hogere levensstandaard
  • Een minder snel stijgende bevolking
  • Een toenemende vraag naar zorg
  • Wellicht minder immigratie gezien de huidige politieke voorkeur van velen op dit terrein

Een combinatie van deze demografische factoren zorgt ervoor dat er met minder mensen meer mensen verzorgt moeten worden. Vooral het vooruitzicht dat binnen enkele tientallen jaren één vijfde deel van de potentiële beroepsbevolking in de zorg moet werken, is schrikbarend.

Tekort aan mensen

Bovendien is zorg niet één onderwerp. Het is een verzamelnaam van meerdere onderwerpen. De zorg kent talloze beroepen, en al die beroepen vergen specialisme. Dat specialisme vergt weer jarenlang onderwijs en studie.

Een voorbeeld: voordat iemand afgestudeerd is als kaakchirurg, heeft die persoon vijftien jaar moeten studeren. Dat staat gelijk aan ongeveer één derde deel van iemands totale aantal werkjaren. En dat is maar één voorbeeld van een beroep in de zorg.

Als je daarbij in het achterhoofd houdt dat mensen vrijwel nooit in die sectoren werken waar het land behoefte aan heeft, dan is het een reële aanname dat Nederland vroeg of laat met een ernstig tekort aan arbeidskracht in de zorg te maken krijgt.

Tenzij…

Er zijn twee manieren om dat tekort te voorkomen.

De ene manier is om toch één vijfde deel van de potentiële beroepsbevolking in de zorg te laten werken. Behalve dat deze maatregel te veel zou vergen van ons arbeidspotentieel als land, zou het ook op verzet van de meerderheid van de bevolking stuiten. Immers, mensen moeten bij het nemen van deze maatregel wel verplicht worden een bepaald beroep te gaan uitoefenen, en zie dat maar eens voor elkaar te krijgen.

Het alternatief is het in gang zetten van een proces wat op de langere termijn de zorg minder afhankelijk moet gaan maken van mensenhanden: robotisering.

Dit proces vergt echter wel het nodige van de samenleving:

  • Allereerst moet de politiek bereid zijn om, over meerdere kabinetsperioden heen, te investeren in deze oplossing.
  • Ten tweede moeten burgers overtuigd worden van de noodzaak om de zorg minder afhankelijk te maken van schaarse menselijke arbeidskracht.
  • Daarnaast moeten er de nodige technologische verbeteringen komen.

Het laatste behoeft in de 21e eeuw geen probleem te zijn. Voor de andere twee vereisten zijn burgers en politici nodig die naar de lange termijn kijken.

Robots in de zorg

Uiteindelijk moet dit proces leiden tot het inzetten en de acceptatie van menselijke robots in de zorg.

Natuurlijk moeten mensen niet van de ene op de andere dag vervangen worden door robots. Zeker in de zorg is veiligheid van het grootste belang.

We moeten echter af van de gedachte dat zorg alleen maar een mensentaak kan zijn. Dat is nu misschien nog wel zo, maar dat hoeft niet zo te blijven.

Ziehier het wonder van de 21e eeuw: technologische vooruitgang