Zoekresultaten voor: energie

Een dik wolkendek maakt het oppervlak van Venus onzichtbaar voor ons.

Venus: zwevend zonnebaden

Venus, vaak het helse zusje van de aarde genoemd, lijkt op het eerste gezicht de meest ongastvrije plek in het zonnestelsel. Schijn bedriegt echter. Zonne-energie volop en een beschermende atmosfeer. De aarde is maar enkele zendminuten weg. Sterker nog: buiten de aarde biedt Venus in het zonnestelsel waarschijnlijk de gerieflijkste omgeving voor de mens. Wel zullen we dan moeten wennen aan een zwevend bestaan…

Een dik wolkendek maakt het oppervlak van Venus onzichtbaar voor ons.
Een dik wolkendek maakt het oppervlak van Venus onzichtbaar voor ons.

Venus factsheet

Grootte: 12100 km doorsnede (95% van de aarde)

Zwaartekracht: 0,90 maal die van de aarde

Atmosfeer: aan de oppervlakte 93 atmosfeer, bestaat uit 96,5% kooldioxide, 3,5% stikstof en gassen als argon en zwaveldioxide

Temperaturen: 460 graden (oppervlak); 20 graden (50 km hoogte)

Daglengte: 243 dagen (atmosfeer roteert in plm. 100 uur)

Lengte jaar: 243 dagen

Waardevolle grondstoffen: kooldioxide, stikstof, mogelijk telluur

Pluspunten: redelijke nabijheid aarde, aardachtige zwaartekracht, op grotere hoogte aangename temperaturen en luchtdruk, beschermende atmosfeer, zonne-energie

Gevaren: oppervlakte is met 95 bar en 460 graden Celsius vrijwel de dodelijkste plek in het zonnestelsel, waterstof is zeer schaars

De omgeving
Een oppervlakte zo heet dat lood smelt. Een verstikkende atmosfeer, zo dicht dat je haast moet zwemmen om je voort te bewegen.

Venus kent twee kleine `continenten`: Ishtar Terra (boven) en Afrodite Terra (iets onder de evenaar).
Venus kent twee kleine `continenten`: Ishtar Terra (boven) en Afrodite Terra (iets onder de evenaar).

Kortom: Venus lijkt, met uitzondering van Jupitermaan Io, meer op de hel dan alle andere plaatsen in het zonnestelsel. Ongeveer tachtig procent van de oppervlakte bestaat uit lavavlaktes, bezaaid met grote, vlakke vulkanen en stervormige structuren. De resterende twintig procent bestaat uit hooglanden. Het hoogste gebergte op Venus, Maxwell Montes, steekt elf kilometer boven het oppervlak uit. Op de hoogste toppen ligt een wittig goedje, vermoedelijk telluur of lood-zink sulfaten.

Ongeveer zestig kilometer boven het oppervlak zijn er zwaveldioxide en zwavelzuurwolken, maar temperatuur en luchtdruk lijken op die van de aarde.

Hoe reis je naar Venus?
Venus is al door diverse ruimtesondes bezocht. De planeet ligt dieper in de zwaartekrachtsput van de zon dan de aarde. De afstand tot de aarde varieert van veertig tot tweehonderdvijftig miljoen kilometer. Het kost minder raketbrandstof om Venus te bereiken dan welke andere planeet in het zonnestelsel ook. Dit dankzij de dichte atmosfeer, die als rem gebruikt kan worden. De reistijd ligt rond een jaar.

Hoe bewoonbaar is Venus?
De dodelijke oppervlakte van Venus is met de huidige technologie voor ongeveer twee uur bewoonbaar. Op vijftig kilometer hoogte zijn zowel luchtdruk, zwaartekracht als temperatuur echter aangenaam aards. Dit inspireerde NASA-wetenschapper Landis om kolonisatieplannen te ontwikkelen.

Een permanente basis op Venus zal moeten drijven in de atmosfeer. Het oppervlak is te heet.
Een permanente basis op Venus zal moeten drijven in de atmosfeer. Het oppervlak is te heet.

Kooldioxide is bij dezelfde luchtdruk en temperatuur anderhalf keer zo zwaar als lucht, wat betekent dat een bel met aardse atmosfeer al een behoorlijk groot drijfvermogen geeft: per kubieke meter zeshonderd gram.

Een kolonie van, zeg, tweehonderd meter lang en vijftig breed zou door de structuur te vullen met een “aards” zuurstof-stikstof mengsel (de atmosfeer van Venus bevat 3,5% stikstof en zuurstof is uit CO2 te halen) blijven zweven. De bovenkant kan met zwavelzuur-resistente zonnepanelen worden bekleed om energie te leveren. Nog meer goed nieuws: mensen kunnen met een gasdicht pak en zuurstoftoevoer ook buiten de basis rondlopen.

Het grote gebrek aan waterstof (en dus water) is een veel groter probleem, maar dit kan met heel veel energie uit zwavelzuur gehaald worden. Op Venus is er ongeveer twee keer zoveel zonne-energie als op aarde. Ook zal de ballonwand van een zwavelzuur-resistent materiaal moeten worden gemaakt.

Voordelen van een kolonie boven Venus
De dikke atmosfeer is ideaal om grote brokken asteroïde mee af te remmen, op aarde ondenkbaar wegens de risico’s. Ook de overvloedige zonnestraling en de rijke koolstofbron – de atmosfeer – maakt Venus voor industriële productie erg interessant.

De oppervlakte van Venus is met 460 graden C en 93 atmosfeer dodelijk.
De oppervlakte van Venus is met 460 graden C en 93 atmosfeer dodelijk.

De planetoïdengordel is vanuit Venus makkelijker te bereiken dan vanaf de aarde.

Het is niet nodig kunstmatige zwaartekracht op te wekken voor fabrieksarbeiders. Venus bevat heel veel stikstof, waar op de maan, Mars en in de planetoïdengordel een groot tekort aan is. Kortom: er zal zich een levendige stikstofhandel kunnen ontwikkelen. De atmosfeer van Venus bevat bepaalde verbindingen die samen niet voor kunnen komen. Mogelijk is het leven op Venus naar de atmosfeer ontsnapt.  Dit zou Venus ook wetenschappelijk gezien een interessante bestemming maken.

Gevaren op Venus
Iedereen die op het oppervlak terecht komt, is ten dode opgeschreven. De atmosfeer is onadembaar en giftig. Hoger in de atmosfeer zijn er wolken geconcentreerd zwavelzuur dat korte metten maakt met de meeste materialen. Venus kent weliswaar nauwelijks een magnetisch veld, maar wel een zeer dichte atmosfeer die redelijke bescherming biedt tegen kosmische straling, de zonnewind en meteorieten.

Hoe zou een kolonie op Venus er uit zien?
Er zijn twee mogelijkheden: een zwevende kolonie in de atmosfeer van Venus of een ruimtestation in een baan om Venus. Ruimtestations zijn uiteraard aangepast aan de omstandigheden van het interplanetaire vacuüm en zien er ongeveer zo uit als in de Lagrangepunten rond de aarde.

Een kolonie in de atmosfeer van Venus zal erg groot moeten zijn: vele honderden meters in doorsnede of groter om voldoende drijfvermogen te krijgen. Boven de zwavelzuurwolken is er heel veel zonlicht beschikbaar. In de ballon (gesteld dat een zwavelzuurresistent, voldoende sterk doorzichtig materiaal wordt toegepast als dakbekleding) kunnen dus enorme landbouw- en leefgebieden aan worden gelegd. Wel zal in de tijd dat de kolonie aan de nachtzijde van Venus zit (gemiddeld twee etmalen) kunstmatige verlichting moeten worden gegeven.

Hoe is Venus tot leefbare wereld om te bouwen?
Venus kent twee grote pluspunten: de zwaartekracht lijkt op die van de aarde en er is voldoende stikstof om een stikstofatmosfeer mee te creëren. Daarentegen zijn er meerdere, zoals een manager het zou noemen, stevige uitdagingen. De dikke kooldioxide-atmosfeer moet weg worden gewerkt. Om een indruk te geven: als alle kooldioxide vast zou vriezen op het oppervlak, ontstaat een laag van meer dan een kilometer dik. Verder is de daglengte veel te groot.

De minst ambitieuze oplossing is de planeet stil te zetten, zodat altijd hetzelfde halfrond naar de zon is gekeerd en vervolgens afschermen van de zon. De kooldioxide zou hierdoor uiteindelijk vastvriezen op de nachtzijde. Eventueel kan de kooldioxide worden omgezet in carbonia, een materiaal dat ongeveer zo hard is als diamant en dus ideaal voor ruimtestations en megalomane ruimteprojecten. Met een zonneschild en het laten inslaan van een kleine ijsmaan (of een wat subtielere aanpak) is het dagdeel in te richten tot een knus zonnig kuuroord.

Venus omgebouwd tot tweede aarde. De pannekoekvulkanen en kleine continenten onderbreken de enorme oceaan.
Venus omgebouwd tot tweede aarde. De pannekoekvulkanen en kleine continenten onderbreken de enorme oceaan.

Een ambitieuzere oplossing is de rotatie versnellen tot een aardachtige daglengte. De hoeveelheid energie die daarvoor nodig is is afgrijselijk veel: 2.14×1029 Joule, voldoende energie om de wereldbevolking vierhonderd miljoen jaar mee van energie te voorzien (of anders bekeken: minder dan tien minuten zonneschijn dus ach, waar praten we over).

Nadat we hebben afgerekend met de kooldioxide moeten we aan genoeg waterstof zien te komen voor een mooie oceaan. Naar keuze kunnen we een ijsmaantje of planetoïdes slopen, wellicht is de grootste planetoïde Ceres een interessante kandidaat, of een ijsreus zoals Uranus of Neptunus strippen (Jupiter en Saturnus bevatten nog veel meer waterstof, maar hun zwaartekracht is veel sterker).

Een energiezuiniger, maar langdurig alternatief is de Kuipergordel en Oortwolk uitkammen naar kometen.

Een stevige verbouwing, maar dan heb je ook wat: een gastvrije zusterplaneet van de aarde, zoals Venus er miljarden jaren geleden waarschijnlijk uitzag. Uiteraard moet er nog wel een goed zonneschild geconstrueerd worden om te voorkomen dat het weer mis ging zoals miljarden jaren geleden.

Van glassmeltovens zijn we voorlopig nog niet af. Toch zijn er voldoende goede toepassingen te bedenken voor kwantumglas.

Glas smelt bij het absolute nulpunt

Onderzoekers van de Tel Aviv Universiteit denken op grond van een berekening dat het mogelijk is om met het nulpuntsenergie-effect  glas te doen smelten bij nul kelvin. Gewoonlijk vereist het smelten van glas temperaturen van vele honderden graden. Wat is hier aan de hand?

Wat is glas?
Vensterglas is de bekendste vertegenwoordiger van een groep stoffen die alle hetzelfde kenmerk gemeen hebben: het zijn als het ware bevroren vloeistoffen.

Glas is in feite een gestolde vloeistof.
Glas is in feite een gestolde vloeistof.

De atomen in een glas zitten niet in een kristalrooster, zoals andere vaste stoffen, maar liggen lukraak door elkaar heen, zo sterk afgekoeld dat ze in hun beweging zijn bevroren. Stoffen met een dergelijke structuur worden dan ook glazen genoemd.

Ook water kan een glas vormen als het extreem snel wordt ingevroren. Bij het invriezen van menselijke weefsels gebeurt dat. Als het invriezen langzamer gaat, vormen zich namelijk ijskristallen die de celwanden lek prikken.

Dus in feite zitten er plakken stroperige vloeistof in je ramen. (OK, het verhaal is iets ingewikkelder). Vroeger werd gedacht dat de verdikking die je in veel middeleeuwse ruiten onder aantreft een gevolg is van het langzaam stromen van glas, maar nu weten we dat de viscositeit (stroperigheid) van glas op kamertemperatuur zo extreem hoog is dat dit effect pas na vele miljoenen tot miljarden jaren merkbaar is. Laten we hopen dat de mensheid het zo lang uithoudt…

Nulpuntsenergie
Er bestaat in de natuur een fundamentele onzekerheid, de onzekerheidsrelatie van Heisenberg. We kunnen bijvoorbeeld niet tegelijkertijd de plaats en de snelheid van een deeltje exact weten. De onzekerheid is altijd groter dan de constante van Planck, 6,26 * 10-34 Joule seconde. Dit ligt niet aan onze slechte instrumenten, integendeel. Deze onzekerheidsrelatie is misschien wel het fundamenteelste wat we in de natuur kennen.

Hoe extreem klein deze waarde ook is, op een miljoenste graad kelvin boven het absolute nulpunt gaat dit effect een enorme rol spelen. We weten bij deze temperatuur de energie van een atoom heel precies, namelijk ongeveer nul. De ijzeren onzekerheidsrelatie van Heisenberg dicteert nu dat de plaats van het atoom erg onzeker wordt. Het atoom verandert in een wazige wolk die steeds meer naburige atomen gaat overlappen. Wat eerst een bevroren vloeistof was gaat daardoor steeds meer lijken op een echte vloeistof. En dit is precies wat het team onderzoekers van de Tel Aviv universiteit stelt.

Van glassmeltovens zijn we voorlopig nog niet af. Toch zijn er voldoende goede toepassingen te bedenken voor kwantumglas.
Van glassmeltovens zijn we voorlopig nog niet af. Toch zijn er voldoende goede toepassingen te bedenken voor kwantumglas.

Kunnen smeltovens afgeschaft worden?
Helaas. De grondstoffen voor glazen bestaan uit kristalvormende vaste stoffen. De bindingsenergie van kristallen, zeker die in de uitgangsstoffen voor vensterglas, is meestal enorm hoog. Die kan alleen verbroken worden door ze voldoende te verhitten, in het geval van silicaatglas (vensterglas) aanmerkelijk boven de duizend graden Celsius. Koelen helpt hier niet.

Wel is voor glasbewerking deze techniek heel interessant. Als het belangrijk is een glasoppervlak heel precies te hechten aan een ander materiaal bijvoorbeeld. Het kwantumglas kruipt dan in alle holtes. Dit is vooral interessant voor zeer gevoelige materialen die verhitting niet overleven. Je zou bij wijze van spreken een levend wezen in glas kunnen inbedden. Kortom: een heel nieuw technisch domein waaruit wel eens producten voort kunnen komen die we ons eerder nog niet voor konden stellen…

Peregrines soliton. Solitonen zijn eenzame golven die ver kunnen reizen zonder uit elkaar te vallen.

Licht als bouwmateriaal

Licht gebruiken als bouwmateriaal? Het idee klinkt te krankzinnig voor woorden. Toch is er meer mogelijk dan mensen zich realiseren. Het is namelijk mogelijk om licht in de knoop te leggen. En een ruimteschip gemaakt van licht kan natuurlijk zo snel als het licht…

Het meeste licht komt voor in de vorm van golven. De elementaire eenheid van licht is het lichtdeeltje, het foton. Een foton bestaat uit een elektrisch veld dat steeds wisselt en hierdoor een magnetisch veld opwekt, dat door zijn veranderingen weer een elektrisch veld opwekt.

Solitonen: kogelgolven

De meeste golven lijken op een zich uitbreidende ring (op het wateroppervlak bijvoorbeeld) of bolschil. Er bestaan echter ook golven die lijken op een reizend pakketje. Zulke golven breiden zich niet uit maar blijven zeer lang intact.

Peregrines soliton. Solitonen zijn eenzame golven die ver kunnen reizen zonder uit elkaar te vallen.
Peregrines soliton. Solitonen zijn eenzame golven die ver kunnen reizen zonder uit elkaar te vallen.

Deze “eenzame golven” worden solitonen genoemd. Anders dan normale golven bestaan ze niet alleen uit een lineair (voorspelbaar)  maar ook uit een niet-lineair deel (een deel dat op zichzelf reageert, als je over je manier van denken nadenkt ben je dus niet-lineair bezig). Het niet-lineaire deel houdt als het ware de golf bij elkaar.

Solitonen komen in allerlei typen golvende media voor. De eerste keer dat een soliton werd beschreven was in 1834 door de Schotse ingenieur John Scott Russell. De geheimzinnige golf vormde zich  in een nauw kanaal. Russell, diep onder de indruk, zette te paard de achtervolging in tot na enkele kilometers de golf verdween.

Eind negentiende eeuw ontdekten de Nederlanders Korteweg en de Vries de KdV-vergelijking die de golven beschrijft. De eenzame golven doken in allerlei media op, van supergeleiders tot rolwolken, in de akoestiek en in kwantumvloeistoffen. Tegenwoordig worden deze kogelgolven onder meer dankbaar gebruikt in glasvezeltechniek:  ze verspreiden zich niet snel, waardoor het signaal helder blijft.

Solitonen vertonen enkele eigenschappen die we anders met materie associëren: ze kunnen op elkaar afketsen, samensmelten of juist in kleinere solitonen uiteenvallen. Enkele mooie voorbeelden zijn op deze website te vinden.

Ruimteschip bouwen met solitonen
Kortom: solitonen zouden wel eens een interessant, weliswaar niet erg sterk maar wel massaloos bouwmateriaal kunnen zijn. Precies wat je zoekt voor een ruimteschip waarmee je zo snel kunt als het licht, want met massa kost dat heel erg veel energie.

De unieke morning glory rolwolken boven Burketown in Noord-Australië: een voorbeeld van solitonen in de atmosfeer.
De unieke morning glory rolwolken boven Burketown in Noord-Australië: een voorbeeld van solitonen in de atmosfeer.

Vervelend is alleen dat solitonen alleen voorkomen in niet-lineaire media. Vacuüm is wel lineair, tenzij met laserlicht zo extreem veel energie in het licht wordt gepompt dat het vacuüm uiteen wordt getrokken. Dit is in een experiment kort geleden gelukt. In principe zou je dus door extreem krachtig laserlicht te bundelen solitonen kunnen creëren waarmee een door mensen gemaakte structuur ongeveer zo snel als het licht naar een naburige ster kan worden gestuurd.

Aanvullend voordeel is dat micrometeorieten of interstellair gas geen issue meer is. Deze vliegen dwars door de lichtsolitonen heen.  Je kan je voorstellen dat een structuur van licht, een lichtschip zo je wilt, op weg wordt gestuurd en zodra het materie raakt, hierin de atomen zo herschikt dat een zelf-assemblerende machine ontstaat die verdere instructies krijgt.

Massaloze solitonbrandstof
Of misschien kan een microruimteschip aangedreven worden door een massaloos solitonhulsel (dat door langzaam uiteen te vallen energie levert) dat op de een of andere manier ook interstellaire materie uitschakelt (bijvoorbeeld door deze te magnetiseren en weg te schieten). Misschien maken vergevorderde aliens ook wel gebruik van deze techniek.

Dit idee is, ik zeg het met nadruk, uiterst speculatief. Het gaat uit van een aantal veronderstellingen (zoals dat ingewikkelder solitonstruturen te bouwen zijn dan de kleine verzamelingen bollen die hierboven beschreven zijn), die later door verder onderzoek ontkracht kunnen worden. Die kans is zelfs vrij groot. Wel zijn er al lichtmoleculen, bestaande uit twee solitonen, aangetroffen.

Video – zee wordt woongebied

Zeventig procent van ons aardoppervlak bestaat uit oceaan. Tot nu toe was wonen op zee alleen weggelegd voor wereldreizigers en zeelieden die getrouwd waren met hun schip, maar nu gaat dat veranderen. In deze video komen unieke concepten tot leven, variërend van olieplatformen die eindelijk een nuttige bestemming krijgen tot ecosteden die hun eigen energie opwekken uit wind, zon en golfslag.

Dit futuristische voertuigje rijdt op perslucht.

Rijden op lucht

Het is al een paar jaar stil rond één van de innovatiefste technieken rond voertuigvoortstuwing: de auto op perslucht. Hoe gaat het met uitvinder Guy Nègre’s geesteskind?

Perslucht in plaats van een batterij
Ieder voertuig heeft een energiebron nodig. Met de uitzondering van op zonne-energie rijdende voertuigen als de Nuna 5 in het zonovergoten Australië  is dat doorgaans een opslagtank met een fossiele brandstof (benzine, diesel of LPG) of een elektrische accu.

Dit futuristische voertuigje rijdt op perslucht.
Dit futuristische voertuigje rijdt op perslucht.

Fossiele brandstof heeft een hoge energiedichtheid (46 MJ/kg) maar wordt steeds schaarser en duurder. De beste elektrische accu’s, lithium-ion, halen per kilo maar rond 1,3 megajoule, maar maken dit voor een deel goed omdat elektromotoren vergeleken met een dieselmotor of ottomotor (benzine) extreem efficiënt zijn: 90% vergeleken met 30-40%. Ook kunnen ze energie terugwinnen bij het remmen.

Wel zijn lithium ion batterijen peperduur en slijten ze snel, zoals laptopbezitters weten.

Een zeer grote tank perslucht van driehonderd bar slaat per kilo maximaal 0,5 MJ energie op. Volgens één fabrikant bereikt zijn persluchtmotor negentig procent efficiëntie. Hoewel de energiedichtheid dus klein is, kan een tank met perslucht zeer snel, in ongeveer anderhalve minuut, bijgevuld worden en is een stevige persluchttank veel goedkoper (en gaat deze veel langer mee) dan lithium-ion batterijen. Ook bij persluchtsystemen kan remenergie terugggewonnen worden.

Na overeenkomsten met India’s megaconcern Tata en diverse andere bedrijven in 2007 bleef het stil. Een belangrijke doorbraak was eind 2010 toen de AirPod, een vijfenveertig-kilometer voertuigje, werd toegelaten op de Franse weg. Voor Frankrijk zijn elektrische voertuigen strategisch zeer gunstig: het land produceert zijn energie voor 80% uit kerncentrales. De eerste AirPods zijn nu op het vliegveld van Parijs in gebruik bij KLM en Air France om bagage te transporteren. Het maximale bereik van de voertuigjes is laag: rond de tweehonderd kilometer. Een hybride model, waarbij de voorraad perslucht wordt aangevuld door een benzinemotor, heeft een veel hoger bereik.

Het grote voordeel van deze modellen is dat geen schaarse en dus dure grondstoffen nodig zijn om ze te produceren. Een persluchtmotor lijkt veel op een benzinemotor zonder verbrandingskamer. Er zijn geen grote permanente magneten (zoals in veel elektromotoren) of dure, slijtende lithium-ion accu’s nodig. Druktanks kunnen van koolstofvezels worden vervaardigd.
Wel is het bereik maar klein. Als tijdelijke oplossing tot we over betere energie-opslagtechnieken beschikken zijn ze toch nuttig.

Video: de AirPod in actie

Raketten moeten heel veel brandstof meeslepen om te kunnen ontsnappen aan de aarde.

Metallisch waterstof als raketbrandstof

Metallisch waterstof belooft de heilige graal van raketvoortstuwing te zijn: veel voortstuwing met weinig massa. Met een raket gevuld met metallisch waterstof is één rakettrap zelfs voldoende om de maan te bereiken. Er is één probleem. We hebben het spul nog steeds niet geproduceerd…

Raketten: het fundamentele probleem van massa en impuls
Auto’s en fietsen komen vooruit door zich af te zetten tegen de weg. Een propellorvliegtuig zet zich met de propellor af tegen de lucht. Een straalvliegtuig slikt lucht in en zet zich af tegen de uitgestoten straal lucht. Het probleem in het luchtledig van de ruimte is dat er niets is om je tegen af te zetten.

Raketten moeten heel veel brandstof meeslepen om te kunnen ontsnappen aan  de aarde.
Raketten moeten heel veel brandstof meeslepen om te kunnen ontsnappen aan de aarde.

Dat is heel vervelend, want de wet van behoud van impuls, wellicht bekend van de middelbare school als het principe actie=reactie, is zelfs na vier eeuwen nog steeds zo ongeveer het meest heilige natuurkundige principe dat er bestaat.

Impuls is iets anders dan energie. Impuls is massa maal snelheid. Door massa een drie keer zo hoge snelheid mee te geven is de impuls te verdrievoudigen, maar de hoeveelheid energie die je daar voor nodig hebt vernegenvoudigt, met het kwadraat dus: bewegingsenergie is [latex]E=1/2 m*v^2[/latex]. Einsteins algemene relativiteitstheorie maakt de situatie nog beroerder: er is extreem veel energie voor nodig om massa te versnellen tot, zeg, 99% van de lichtsnelheid (om precies te zijn: meer dan Nederland in een half jaar aan elektriciteit verbruikt), maar de impuls is nog steeds [latex]0,99c * m[/latex], dat is de impuls van een langzaam rijdende trein. Met andere woorden: om massa te versnellen moet je heel veel massa (raketbrandstof) meenemen. Die ook weer versneld moet worden.

Gelukkig is er één kleine troost. Voortstuwing wordt om dezelfde reden veel effectiever bij hoge snelheden. Het kost evenveel impuls om te versnellen van nul naar één meter per seconde als het kost om van 100.000 naar 100.001 meter per seconde te versnellen terwijl de benodigde hoeveelheid energie in dat tweede geval twee keer zo hoog is.

Samengeperste waterstof
De gasreus Jupiter heeft het sterkste magnetisch veld van het zonnestelsel: meer dan tien keer zo sterk als dat van de aarde. De aarde heeft een vloeibare kern bestaande uit de (elektrisch geleidende) metalen ijzer en nikkel die een sterk magnetisch veld opwekken, maar Jupiter heeft nauwelijks metalen in zijn kern.  Dus moet er iets anders zijn dat dit veld opwekt. Onderzoekers denken dat dit geheimzinnige materiaal waterstof is, zo dicht samengeperst dat het zich als een metaal gaat gedragen.

De gasreuzen Jupiter en Saturnus bestaan voor een groot deel uit metallische waterstof, denken astrofysici.
De gasreuzen Jupiter en Saturnus bestaan voor een groot deel uit metallische waterstof (donkergrijs), denken astrofysici.

Metallisch waterstof
Er bestaan vanuit elektrisch oogpunt twee soorten materialen: isolatoren en geleiders (en uiteraard allerlei interessante tussenvormen: halfgeleiders).  In een geleider (zoals alle metalen) kunnen er sommige elektronen vrij bewegen. Daardoor geleiden ze elektriciteit. Waterstof bestaat uit een positief geladen atoomkern (doorgaans een enkel proton) en  een negatief elektron dat er omheen hangt. Gewoonlijk zitten deze elektronen stevig vastgenageld aan de atoomkern. Het gevolg: er kan geen elektrische stroom (die immers bestaat uit elektronen) lopen door waterstof: het is een isolator.

Het verhaal wordt anders bij extreem hoge drukken en dichtheden. Elektronen en atoomkernen worden dan zo dicht op elkaar geperst dat waterstofatomen uiteenvallen en elektronen vrij tussen de atoomkernen kunnen bewegen, net als in een metaal. Deze gedegenereerde vorm van waterstof wordt metallisch waterstof genoemd. Op dit moment is alleen zeer kort metallisch waterstof geproduceerd. Toen onderzoekers in 1996 een kogel afvuurden op vloeibaar waterstof bleek de elektrische weerstand een fractie van een seconde sterk te dalen. De meest logische verklaring is dat de waterstof een fractie van een seconde in een metaal veranderde. Helaas zijn alle verdere pogingen om metallisch waterstof te produceren tot op dit moment mislukt, alhoewel wel supergeleiding is aangetoond in extreem samengeperst siliciumhydride (SiH4).

Volgens de theorie is er 400 gigapascal, ongeveer vier miljoen atmosfeer, nodig om waterstof direct om te zetten in metallisch waterstof. Dat is drie keer zo veel als het wereldrecord waterstofatomen martelen op dit moment.

Metallisch waterstof als wonderbrandstof
Raketbouwers zijn erg geïnteresseerd in dit materiaal, want de energiedichtheid van metallisch waterstof is met 216 megajoule per kilo vele malen zo groot als het verbranden van waterstof oplevert (zeker als je het gewicht van de benodigde zuurstof meerekent). Er hoeft dus veel minder brandstof meegenomen te worden: op dit moment moeten honderden kilo’s brandstof meegesleept worden om één kilo nuttige lading in de ruimte te krijgen.

Volgens sommige theorieën is metallisch waterstof metastabiel. Dat wil zeggen dat het ook bij lagere drukken en temperaturen in metallische staat blijft. Terroristen opgelet: dat maakt het ook meteen een ideale springstof. Vooral door die coole waterstofexplosie direct er na. De ETA zal stinkend jaloers zijn. Gelukkig wel makkelijk aan te tonen met een metaaldetector, dus geen paniek als u een vakantievlucht hebt gepland. Ook is metallisch waterstof milieuvriendelijk: als het op aarde ontploft komt alleen waterdamp vrij en in de ruimte bestaan de meeste rondzwervende atomen al uit waterstof.

Zonne-energie farm in de woestijn. Enkele tienden van procenten van het landoppervlak is reeds voldoende.

Afschaffen fossiel kan al over twintig jaar

Twee tot drie miljoen levens per jaar redden, schone lucht en geen bloederige oorlogen om aardolie meer, terwijl we niet meer aan energie uitgeven dan nu. Al met onze bestaande technieken kunnen we in twintig, hooguit veertig jaar volledig overstappen op duurzame energie. Zon, wind en water kunnen in al onze energie voorzien, zeggen experts. Zelfs als er nu geen enkele technische doorbraak meer wordt gerealiseerd. Oliesjeiks kunnen dus maar beter snel een andere inkomstenbron zoeken…

Mark Z. Jacobson is hoogleraar civiele en milieutechniek aan de Californische universiteit Stanford. Niet iemand dus die je zou verdenken van hippie-sympathieën. Met transportonderzoeker Mark Delucchi van de Davis Universiteit van Californië (Nederlanders zullen zich thuisvoelen in de fietsrijke stad Davis) publiceerde hij een studie hoe de olieloze wereld van 2030 er in grote lijnen uit zal zien.

Zonne-energie farm in de woestijn. Enkele tienden van procenten van het landoppervlak is reeds voldoende.
Zonne-energie farm in de woestijn. Enkele tienden van procenten van het landoppervlak is reeds voldoende.

Grote zonnefarms in woestijnen als die in Arizona en Texas (voor Europa liggen Zuid-Spanje en eventueel de Sahara voor de hand, India heeft de Thar-woestijn en China de Gobi-woestijn)  wekken het grootste deel van alle energie op. Windmolens leveren de rest terwijl waterkracht ten procent voor haar rekening neemt. Geothermische energie (aardwarmte) en golfslaggenerators leveren de rest.

Energiegebruik in 2030
Vliegtuigen vliegen in 2030 op waterstof in plaats van kerosine. Dat kan ook heel goed: waterstof levert per kilo drie keer zoveel energie als kerosine en bespaart zo veel gewicht en dus brandstof. Wel moet de tank veel groter zijn.
Voertuigen, schepen en treinen werken op elektriciteit of waterstofbrandstofcellen. Huizen worden verhit en gekoeld met warmtepompen op elektriciteit. Steenkool en aardgas zijn niet meer nodig.

Het plan leidt op korte termijn al tot een energiebesparing van dertig procent. De reden: directe omzetting in elektriciteit is veel efficiënter dan verbranding. zelfs de beste verbrandingsmotor haalt misschien dertig procent conversie, terwijl elektromotoren dicht bij de honderd procent zitten en brandstofcellen (die de elektriciteit opwekken) ook ruim boven de zestig procent zitten.

Zon en wind met hydro als accu
In hun visie vullen wind- en zonne-energie elkaar aan. Hoe minder zon, hoe meer wind. Het is dus verstandig om investeringen in beide uit te balanceren.

Wind waait vooral als er weinig zon is, dus kan zonne-energie aanvullen. Door windmolens op zee te plaatsen kan het landgebruik nog verder omlaag.
Wind waait vooral als er weinig zon is, dus kan zonne-energie aanvullen. Door windmolens op zee te plaatsen kan het landgebruik nog verder omlaag.

Plotselinge pieken kunnen worden opgevangen met hydroelectriciteit:  in de praktijk, een stuwmeer leeg laten lopen als er behoefte in aan veel stroom. Zij zien waterstof als energiebuffer: zodra er een overschot aan energie is wordt deze gebruikt om waterstof op te wekken voor voer-, vaar- en vliegtuigen.

Grondstof- en landgebruik
Bij hun berekeningen zijn ze uitgegaan van de bekende hoeveelheden grondstoffen. Zelfs schaarse grondstoffen als platina en zeldzame aardmetalen bleken geen bottleneck te vormen. Het beroep op land valt mee. Ongeveer vier tiende procent van het land wordt in beslag genomen door de installaties en nog eens zes tiende procent om windmolens ver genoeg uit elkaar te kunnen plaatsen.

Essentieel voor het plan is een wijdvertakt netwerk van elektriciteitskabels dat elektriciteit van plaatsen met overschotten naar plaatsen met energietekort kan transporteren.

Beide onderzoekers denken dat een bedrag ter grootte van wat aan het Apollo-project is uitgegeven voldoende is om de Verenigde Staten te veranderen in een groene economie.

Bronnen
Providing all global energy with wind, water and solar power
ibid, deel 2
World Can Be Powered by Alternative Energy, Using Today’s Technology, in 20-40 Years, Experts Say
Perspublicatie van Stanford

Eén van de dertien raadselachtige botsingen.

Kandidaatdeeltje donkere materie gevonden?

De spanning loopt op bij de LHC-onderzoekers in Genève. Geen wonder. Uit drieduizend miljard botsingsproeven, gedaan in de compact muon solenoid-detector, zijn ondertussen een dertiental afwijkende botsingen gezeefd. De resultaten zijn het makkelijkst te verklaren door aan te nemen dat de lichtste van de hypothetische sparticles, voorspeld door de supersymmetrie theorie, echt bestaat.

Supersymmetrie
Op dit moment zijn er twee grote natuurkundige theorieën. Einsteins algemene relativiteitstheorie die de zwaartekracht beschrijft en het standaardmodel, dat bestaat uit de drie kwantumveldtheorieën die de overige drie krachten: de elektromagnetische kracht (QED), de zwakke kracht en de sterke kracht(QCD) beschrijven.

Eén van de dertien raadselachtige botsingen.
Eén van de dertien raadselachtige botsingen.

Alle pogingen om algemene relativiteit te verzoenen met het standaardmodel hebben gefaald. Wel is de speciale relativiteitstheorie naadloos in de kwantumelektrodynamica verwerkt.

Volgens de supersymmetrie theorie (SUSY) kent ieder deeltje uit het Standaardmodel een superpartner: zo heet een superelektron een selectron, een superquark een squark enzovoort.

Superdeeltjes, sparticles, verschillen van normale deeltjes omdat hun spin, ‘draairichting’, een half afwijkt van die van normale deeltjes. Het gevolg: bosonen veranderen in fermionen en andersom. Je krijgt dan heel vreemde materie: lichtdeeltjes (fotino’s) die elkaar afstoten en superneutronen die door elkaar heen kunnen vliegen. Super-atomen en super-levensvormen zien er (als ze al bestaan) heel anders uit dan die van ons. En kunnen dwars door ons heen vliegen zonder dat we het merken.

Deze superpartners hebben voor kosmologen de prettige eigenschap dat ze alleen maar door de zwaartekracht waar te nemen zijn, een ideale kandidaat voor de mysterieuze donkere materie dus zonder dat ze hun toevlucht hoeven te zoeken tot alternatieve zwaartekrachtstheorieën als MOND. Om het prille geluk helemaal compleet te maken: het lichtste sparticle  is ook stabiel.

In de Large Hadron Collider worden protonen, waterstofkernen, met extreem hoge energie met elkaar in botsing gebracht. De filosofie achter de proeven is dat in een klein deel van de gevallen de botsingsenergie zal worden gebruikt om nog onbekende deeltjes te produceren.

Een deeltje dat op bijna geen enkele wijze reageert met ‘normale’  materie is behalve door de zwaartekrachtswerking, maar op één effectieve manier waar te nemen: door het plotseling verdwijnen van energie en moment (beweging maal massa), op het moment dat het gevormd wordt. Op deze manier is het neutrino ook ontdekt.
Dit is precies wat er in de dertien botsingen gebeurd is. Er is precies zoveel energie en moment verdwenen als volgens de supersymmetrietheorie wordt voorspeld.

Dertien is niet erg veel en om een statistisch significant meetresultaat te bereiken moeten de botsingsproeven nog even doorgaan. Dat dit een veelbelovende eerste ontwikkeling is op weg naar een nieuwe natuurkunde, staat echter buiten kijf.

De rode gebieden zijn bronnen van extreem hoge hoeveelheden ULF-straling.

Wijzen ULF radiogolven op komende aardbeving in de Golf van Mexico?

Extreem langgolvige radiogolven (ULF) piekten in Haïti een maand voor de aardbeving. Kunnen we hiermee nieuwe aardbevingen voorspellen? En wijzen de emissies op een nieuwe aardbeving? Het inkoopgedrag van de Amerikaanse federale rampenbestrijdingsorganisatie FEMA is in ieder geval opmerkelijk…

ULF: ultralage radiofrequentie
Elektromagnetische straling komt in heel veel verschillende golflengtes voor, variërend van de zeer energierijke, extreem kortgolvige gammastraling via licht en warmtestraling tot de zwakke langgolvige fotonen van radiostraling. De langste golven die we kennen worden ULF, ultra low frequency, genoemd. Je moet dan denken aan golven met een frequentie van drie hertz of lager, dus minder dan drie trillingen per seconde. De bijbehorende golflengte is honderdduizend kilometer of meer.

ULF-uitbarstingen  gemeten voor aardbeving in Haïti
De Franse satelliet DEMETER mat in de maand voor de aardbeving op Haïti in het gebied heftige uitbarstingen in ultra-lage frequentie radiostraling.

De rode gebieden zijn bronnen van extreem hoge hoeveelheden ULF-straling.
De rode gebieden zijn bronnen van extreem hoge hoeveelheden ULF-straling.

Al langer vermoeden geologen dat aardbevingen en terrestriële ULF-uitbarstingen met elkaar samenhangen. Rond de tijdstippen dat aardbevingen optreden, zijn vaak merkwaardige elektromagnetische verschijnselen te zien in het aardbevingsgebied.
De microsatelliet DEMETER werd daarom in 2004 in een polaire baan (een baan waarbij de satelliet over de beide polen draait) om de aarde gebracht. Op die manier kan de satelliet het gehele aardoppervlak scannen: bij elke omloopbaan wordt een andere meridiaan gescand. In de weken voor de aardbeving in Haïti werden uitbarstingen langs de gehele Andes-breuklijn en de Rocky Mountains gemeten.
Het lijkt er op dat het gehele Amerikaanse platensysteem in beweging is.

Tellurische stromen
Al meer dan een eeuw is bekend dat er onderzeese en onderaardse elektrische stromen bestaan: de tellurische stromen. Deze stromen zijn over het algemeen gericht naar de plaats waar de zon recht boven de hemel staat en helpen bij het ontstaan van een elektrische potentiaal en dus onweersbuien. Tellurische aardstromen kunnen ook afgetapt worden als zwakke bron voor elektriciteit: aardbatterijen.

Vermoedelijk spelen tellurische stromen een centrale rol in de ULF-uitbarstingen. Als door langs elkaar heen schuivende rotsplaten (dit is wat er gebeurt bij aardbevingen) kristallen in gesteente worden fijngemalen, ontstaan enorme elektrische spanningen. Een gasaansteker werkt ook via dit piëzo-elektrische effect.  Deze spanningen wekken weer tellurische stromen op, die de ULF golven opwekken.

Aardbeving in zuiden VS aanstaande?
In samenzweringskringen is al verontrust gereageerd op de publieke aanbesteding door de Amerikaanse rampenbestrijdingsorganisatie FEMA voor 140 miljoen noodrantsoenen in de kuststaten aan de Golf van Mexico.
Het kan uiteraard dat het hier om een voorbereiding voor het nieuwe orkaanseizoen gaat. Het kan ook dat de volgende aardbeving wordt voorspeld in de New Madrid seismische zone, een breukensysteem in dit gebied waar onder andere de grote stad Memphis ligt. Een zware aardbeving zou weinig heel laten van deze stad.

Goedkoop, handig en milieuvriendelijk. In China is de elektrische fiets een ongekend succesverhaal.

Derde wereldauto wordt elektrisch

Steeds meer mensen in de Derde Wereld kunnen zich een auto veroorloven. De kansen worden steeds groter dat dat een elektrische auto wordt. Goed nieuws ook voor ons, want hoe meer lithiumaccu’s er worden gemaakt, hoe goedkoper elektisch rijden ook voor ons wordt. Moeten bepaalde onaangename oliedictaturen straks een andere inkomstenbron gaan zoeken?

De Chinese lithium-revolutie
In China zijn elektrische fietsen razend populair. Geen wonder, ze zijn zuinig, goedkoop en gebruiksvriendelijk. Er worden er dertig miljoen van verkocht. Per jaar.

Goedkoop, handig en milieuvriendelijk. In China is de elektrische fiets een ongekend succesverhaal.
Goedkoop, handig en milieuvriendelijk. In China is de elektrische fiets een ongekend succesverhaal.

Tot voor kort werden ze uitgerust met zware loodaccu’s.

De Chinese overheid heeft nmu echter maximumgewichten voor elektrische fietsen vastgesteld waardoor fabrikanten massaal overstappen op lithium-ion accu’s.

Dat is goed nieuws, want hoe meer lithium-ion accu’s worden geproduceerd, hoe goedkoper ze worden.

Ook voor elektrische auto’s en andere toepassingen.

Wel wordt makkelijk winbaar lithium schaarser.

Koning Shell
In  talrijke welvarende, westerse landen bestaat er nog veel weerstand tegen de overschakeling op elektrisch.

Wikileaks onthulde dat de Nederlandse overheid zich het vuur uit de sloffen loopt voor Shell. Volgens hardnekkige geruchten is het koninklijk huis grootaandeelhouder.
Wikileaks onthulde dat de Nederlandse overheid zich het vuur uit de sloffen loopt voor Shell. Volgens hardnekkige geruchten is het koninklijk huis grootaandeelhouder.

Geen wonder: alleen in Nederland al brengt de brandstofaccijns zo’n negen miljard euro per jaar op en zoals bekend uit Wikileaks geniet oliegigant Koninklijke Olie/Shell een uitzonderingspositie die andere grote bedrijven niet genieten. Massale overschakeling op elektrisch betekent zowel verlies van bijna tien miljard aan accijns als ruzie met de Shell-top (en grootaandeelhouders van Shell, zoals volgens sommige hardnekkige geruchten het koninklijk huis uiteraard) die not amused zullen zijn.

India en China kiezen strategisch voor elektrisch
Gelukkig is de technische vooruitgang niet afhankelijk van visieloze Nederlandse politici. We zien dat in grote landen zonder veel eigen energiebronnen zoals India en China nu stevig door wordt gepakt. India kan door middel van thorium straks in een groot deel van zijn energiebehoefte voorzien. Elektrische auto’s voorkomen dat India en China aan het aardolie-infuus komen te liggen en uit worden gezogen door oliepotentaatjes zoals nu met Nederland gebeurt. Nederland importeert per jaar voor zeventien miljard euro aan olie en gas.

Megatrend: elektrisch vervoer
Dit geldt ook voor de meeste andere derdewereldlanden. Ze beschikken niet zoals de westerse landen in hun gloriedagen over de luxe van goedkope olie. Als je een energie-infrastructuur van de grond af op moet bouwen is de meest logische keuze niet  een dure, schaars wordende fossiele brandstof als aardolie, maar de in tropische landen overvloedig aanwezige zon of kernenergie.

Elektriciteit heeft als voordeel dat het in energietermen een “universele valuta” is. Wat voor energiebron je ook gebruikt, je kan deze altijd (met meer of minder rendement) omzetten in elektriciteit. Kortom: beschik je over weinig geld en nauwelijks infrastructuur, dan is de meest logische keus elektrisch.

In Europa verwachten we dat Frankrijk trendsetter zal zijn. Het land produceert 80% van zijn elektriciteit niet uit fossiel, maar d.m.v. kerncentrales. Maar de grootste trendsetters zullen, heel verrassend, toch de derde-wereldlanden zijn. Times are a changing…..

Of toch maar op de fiets?
De fiets is een fitness apparaat en vervoermiddel in één. meer gebruik van de fiets lost zowel het fossiele brandstof probleem als het gezondheidsprobleem voor een belangrijk deel op.

De Quest van fabrikant Velomobiel bereikt snelheden tot boven de vijftig kilometer per uur. Alternatief voor de auto?
De Quest van fabrikant Velomobiel bereikt snelheden tot boven de vijftig kilometer per uur. Alternatief voor de auto?

Cassandra Club denkt daarom dat de fiets het vervoermiddel van de toekomst zal worden. Wij denken dat binnen stedelijke gebieden de fiets ideaal is, maar dat de mogelijkheden voor langere afstanden uiterst beperkt zijn. Met de beste ligfietsen, zoals de Quest van Velomobiel, kan een fietser meer dan vijftig kilometer per uur rijden. Het wereldrecord staat op zeventig kilometer per uur. Vergeet alleen niet dat mensen door veel lichaamsbeweging meer gaan eten; landbouw kost ook veel fossiele brandstof.