Techniek

Watson in actie

Supercomputer wordt telefonische verkoper

Na het succes met triviantkampioen Watson, werkt IBM nu aan computers die net als een menselijke verkoper klanten kunnen bellen.

Verkopers aan de telefoon. Voor de meesten van ons een vaak terugkerend, irritant verschijnsel. Geen wonder dat het Bel Mij Niet-register razend populair is. Bedrijven huren callcenters in met laagbetaalde en dito opgeleide werkenden, die vaak een script moeten volgen om klanten dingen van vaak twijfelachtig nut te verkopen.

Supercomputer verkoopt zichzelf

Op dit moment ontwikkelt IBM de supercomputer Watson door als medisch expertsysteem, maar de volgende applicatie wordt een grotere groeimarkt: telefonische verkoop. Van verkopers wordt veel productkennis gevraagd. Menselijke verkopers hebben van een product, zeker als het om een enorm assortiment of zeer ingewikkelde producten gaat, niet alle informatie in hun hoofd. Een verkoper die er blijk van geeft een product niet te kennen, raakt de klant kwijt. Als een rekengorilla als IBM Watson verkopers zou kunnen ondersteunen, zou dit zich vertalen in veel meer effectieve verkopen. Watson is nu als eerste aan het werk gezet bij IBM zelf. Immers, het bedrijf verkoopt zeer ingewikkelde apparatuur waaronder… Watson zelf. Een computer die zichzelf verkoopt dus.

Watson als ultrakrachtige zoekmachine die mensentaal begrijpt

IBM Watson is in feite een krachtige zoekmachine die draait op de IBM-software DeepQA. Deze kan worden gebruikt om vragen te beantwoorden. Prop er een volle harde schijf van een terabyte aan technische documentatie in – dat kan algemene informatie voor een kennisquiz zijn, symptomen voor een medische diagnose of technische productdocumentatie – en DeepQA genereert er betekenisvolle informatie van, met andere woorden: interpreteert de kennis.  Zoekmachines als Google zijn al zeer goed in zoeken, maar DeepQA kan daarnaast ook zeer goed de dubbelzinnige menselijke taal begrijpen.
Dat bleek wel door zijn klinkende overwinning op menselijke tegenstanders in de kennis-spelshow Jeopardy.

Supercomputer vervangt compleet salesteam

Watson in actie
Watson in actie tijdens Jeopardy! – Wikimedia Commons

IBM zegt dat Watson in de huidige uitvoering alleen als technische ondersteuning voor verkopers dient, maar de verleiding voor bedrijven zal vermoedelijk erg groot zijn om hun verkoopteam de laan uit te sturen en Watson de honneurs waar te laten nemen. Als je eenmaal DeepQA hebt gevuld met data, zal het programma onvermoeibaar dag en nacht vragen beantwoorden. Een computer heeft als voordeel dat deze voor een mens niet bedreigend over komt en geen psychologische trucjes uit zal halen om je over te halen iets te kopen wat je helemaal niet wilt. Althans: nog niet.
Ook voor e-commerce is Watson interessant. Veel sites bieden een menselijke chatbot aan. Die kan vervangen worden door Watson. Idem door communicatie via Twitter en SMS. Klanten sturen hun vraag en Watson geeft antwoord.

Watson nog extreem duur

Helaas – of gelukkig – is DeepQA en de hardware waarop dit systeem draait in 2011, extreem zwaar en dus duur, zowel om te kopen als om te onderhouden. Watson bestaat uit tien server racks gevuld met in totaal negentig Power 750 servers, samen uitgerust met 2880 processoren en 15 terabytes RAM. 15 terabytes is volgens sommige schattingen de geheugeninhoud van onze hersenen. IBM geeft geen prijsopgave van de totale kosten van Watson, maar als je bedenkt dat een enkele server rond de 350 000 dollar kost, zal de totale kostprijs van een Watson in je schuur rond de 32 miljoen dollar bedragen. Tel daarbij nog het enorme stroomverbruik – een uurtje Watson aan het werk zetten kost je meer dan zestig kilowattuur, zo’n twaalf euro – plus het nodige technische onderhoud, en het is duidelijk dat alleen een groot bedrijf als IBM dit zich kan veroorloven. Althans: anno 2011. Anno 2021 zijn veel van deze diensten al via de cloud te huur. Ontwikkelt de hardware zich even snel als in de voorliggende periode, dan zitten we nog steeds op schema.

Mens overtroffen

De wet van Moore is echter nog lang niet uitgewerkt. Elke anderhalf tot twee jaar verdubbelt de computercapaciteit. Als je bedenkt dat de Cray Y-MP-supercomputer van einde jaren negentig van de vorige eeuw geleden, ook al zo’n elektriciteit-slurpend peperduur monster, minder kon dan een mobieltje nu, is de uitkomst duidelijk. Over tien jaar (en waarschijnlijk eerder, want er zijn vergevorderde plannen voor honderd keer snellere en zuiniger chips) lopen we met deze dingen op zak die slimmer zijn dan de meesten van ons. Laat de implicaties daarvan goed tot u doordringen, waarde lezer.

Meer info

Watson – interactieve animatie – IBM

Transparent Machines

Privacy is een totale illusie geworden met het oprukken van bedrijven als Google en Facebook, die uit de enorme hoeveelheden gebruikersdata precieze profielen kunnen samenstellen over de gebruikers. In veel opzichten weten deze bedrijven meer van ons dan wijzelf.

In de toekomst wordt dit nog veel erger, als het Internet of Things, de term voor een web van miljarden sensoren overal op aarde, realiteit wordt. Aan de andere kant krijgen we zo een wereld die voor ons op maat gesneden is, problemen die al in een vroeg stadium worden opgelost en ziekten die ontdekt worden voor ze kwaad aan kunnen richten. Vloek of zegen? De jury is er nog steeds niet uit.

Winkelen met de Zee Aero? Wellicht binnenkort bij ons, als het aan de startup ligt.

De toekomst van transport: vier nieuwe ontwikkelingen

Vier revoluties in transport vinden tussen 2015 en 2025 plaats, stelt futuroloog en ruimtevaartondernemer Peter Diamandis. Geen science-fiction, maar technische ontwikkelingen die op dit moment al aan het doorbreken zijn.

Zelfrijdende voertuigen

Het zal u als lezer van Visionair niet ontgaan zijn. Zelfrijdende auto’s komen er aan in de toekomst van transport en reizen. De gevestigde autofabrikanten en nieuwkomers als Google, Apple en Tesla zijn als bezetenen technici bij elkaar aan het wegkopen. Elke groep probeert koortsachtig om de eerste zelfrijdende auto op de markt te brengen. Een veel genoemde streefdatum is het jaar 2020. Volgens het Amerikaanse onderzoeksbureau IHS zullen rond 2035 zeker 54 miljoen autonome voertuigen op de wegen rondrijden. Een te verwachten effect is dat het aantal verkeersongelukken drastisch zal gaan dalen. Op dit moment veroorzaken verkeersongelukken in de wereld 1,2 miljoen doden per jaar. Evenveel als bijvoorbeeld het aantal doden in de Golfoorlogen. Verreweg de grootste veroorzaker van verkeersongelukken is menselijk falen. Het uitschakelen van de menselijke factor zal dit cijfer drastisch doen dalen, al zijn de eerste resultaten niet bemoedigend: ongeveer een op de twaalf autonome voertuigen van Google was in een halfjaar betrokken bij een botsing, zes maal zo hoog als het gemiddelde per 100.000 rijkilometers in de VS.  Vergeet echter niet, dat de computertechniek heel wat sneller verbetert dan de rijvaardigheden van de gemiddelde automobilist.
Ook passen er tot acht maal zoveel autonome voertuigen op een gegeven verkeersnet, als door mensen bestuurde voertuigen omdat de reactiesnelheden van autonome voertuigen veel hoger zijn. Dit betekent dat er veel minder wegen nodig zijn dan nu, wat de steden weer ademruimte zou geven.
Op dit moment is ongeveer een kwart van de broeikasgassen en een kwart van het totale Amerikaanse energieverbruik te wijten aan persoonlijk transport. Op zich besparen autonome voertuigen geen brandstof, maar Diamandis noemt dit toch als punt. Mogelijk omdat autonome voertuigen zonder problemen langdurig opgeladen kunnen worden, zonder ongeduldige bestuurder. Een autonoom voertuig zou bijvoorbeeld ’s nachts of tijdens werktijden naar een laadpunt kunnen rijden.

Ook besparen autonome voertuigen veel geld, stelt Diamandis. Dit, omdat ze gedeeld bezit zijn en de lagere hoeveelheid ongelukken, parkeerkosten en het lagere gewicht van elektrische auto’s de kosten zullen laten dalen tot tien procent van nu. Gesprekken met autobezitters die ik over dit onderwerp had, laten echter duidelijk blijken dat ze het erg prettig vinden om een auto tot hun beschikking te hebben als het hun uitkomt. Bij calamiteiten worden uiteraard alle autonome voertuigen snel weggegrist. Op je eigen autootje kan je altijd rekenen. Voor mensen zonder rijbewijs zijn autonome voertuigen dan weer een droom die uitkomt. Een ander voordeel van huurvoertuigen is dat voertuigen naar wens kunnen  worden gehuurd. Het is niet nodig bijvoorbeeld een logge kampeerwagen te gebruiken om boodschappen mee te doen.

Hyperloop

Elon Musk, binnengelopen met PayPal en stichter van ruimtevaartbedrijf SpaceX en elektrische autogigant Tesla, ontwikkelde een krachtig nieuw vervoermiddel dat de sterke punten van vliegtuig en trein combineert. Geërgerd door de extreem hoge aanbestedingsprijs voor een hoge-snelheidstrein tussen Los Angeles en San Francisco van $69 miljard, bedacht hij de Hyperloop, die hetzelfde kunstje -en beter- verricht voor slechts een tiende van deze hoeveelheid dollars. De hyperloop is een bijna vacuüm gezogen buis, waarin een trein met snelheden boven de 1200 km per uur op een soort luchtkussen reist. Als er in Europa hyperloops zouden worden gelegd, zou je bijvoorbeeld in een half uur naar Parijs of Londen kunnen, in een klein uur naar Berlijn en in drie uur naar Athene.

De hyperloop is veel zuiniger dan een vliegtuig of hogesnelheidstrein. Dit omdat er bijna geen luchtweerstand is. Ook gaat versnellen en vertragen met magneetremmen die bijna 100% van de energie toevoeren en kunnen terugwinnen. Check voor een snelle indruk bovenstaande video.

Musk werkte zijn plannen uit in dit rapport, een aanrader als u het naadje van de kous wilt weten.

Lang bleef de hyperloop een droom, maar nu komt het werkelijk van de grond. Hyperloop Technologies heeft een aantal zwaargewichten, waaronder Diamandis zelf, geldmannetjes en Obama’s campagnemanager in het stuurcomité zitten en (volgens Diamandis) enkele begaafde ingenieurs ingehuurd.

Vliegende auto’s en ander persoonlijk luchtvervoer

Drones zijn nog maar het begin. De echte doorbraak komt als er betaalbare vliegende auto’s, jetpacks en andere persoonlijke luchttransportmiddelen komen. Vliegende auto’s en jetpacks zijn schoolvoorbeelden van science fiction voorspellingen die niet uitkwamen. Diamandis denkt dat ze nu eindelijk van science fiction, science fact worden door de opkomst van drie convergerende technologieën: batterijen met hoge energiedichtheid, autonome navigatie met GPS en lichte, extreem sterke materialen. X Prize wil een ‘Transporter XPRIZE’ uitloven om dit persoonlijke luchtvervoer werkelijkheid te laten worden. Wat Diamandis voor ogen heeft is een soort uit de kluiten gewassen quadcopter drone, of luchttaxi, die u als passagier oppikt, naar een vlieghoogte van 160 m brengt, naar de bestemming die de passagier mondeling geeft.

Winkelen met de Zee Aero? Wellicht binnenkort bij ons, als het aan de startup ligt.
Winkelen met de Zee Aero? Wellicht binnenkort bij ons, als het aan de startup ligt.

Een vliegende elektrische autofabrikant, Zee Aero, wordt door Google gesponsord, zo gaan de geruchten. Het vliegtuigje van Zee Aero, dat over een groot aantal propellors beschikt, zou in staat zijn, op een ruime parkeerplek op te stijgen en te landen. Hiermee zou de droom van een vliegende boodschappenauto inderdaad dichtbij komen.

Een ander ontwerp is de Volocopter van bedrijf e-volo. Een elektrische helicopter voor twee passagiers met achttien rotors. Voor dichtbevolkte steden zijn deze vliegtuigjes een uitkomst (al blijft ook in drie dimensies ruimte een schaars goed, dus zullen er wel vliegroutes worden verplicht gesteld). Diamandis ziet de meeste mogelijkheden voor deze vliegtuigjes in moeilijk begaanbare gebieden met nauwelijks wegen, zoals in Afrika, of wat dat betreft, in Nepal. Zo zou je de aanleg van wegen kunnen overslaan. Ik ben hier persoonlijk wat sceptischer. Zelfs met  benzine als brandstof, wat een hogere energiedichtheid kent dan zelfs de beste elektrische batterij, is de actieradius van kleine helikoptertjes klein, hooguit een paar kilometer. Zoals bij de zeer lichte, minimalistische Gen H-1, die maar 70 kg weegt, met een zeer lichte piloot, haal je met pijn en moeite honderd. Alleen als je gebruik kan maken van een nucleaire batterij, of een (theoretisch mogelijke, maar praktisch nog niet uitvoerbare) batterij die fotonen op kan slaan, kan je de actieradius vergroten tot honderden of zelfs duizenden kilometers.

Telepresence robots en virtuele werelden

Maar wat als je niet eens meer van je plaats hoeft te komen? Van een afstand van honderden, of zelfs duizenden, kilometers communiceren kunnen we al meer dan een eeuw. Duizenden jaren zelfs, als we de Afrikaanse tamtam meerekenen.

Op dit moment wordt er heel veel moeite gedaan voor het heen en weer slepen van menselijke lichamen. Alleen in de Verenogde Staten al 310 miljard dollar per jaar. Eigenlijk is dat helemaal niet handig, zoals iedereen die reist door vele tijdzones en barre luchthavens, waar je een uiltje probeert te knappen op oncomfortabele kuipstoeltjes, je kan vertellen. Waar het om gaat is de informatie. Diamandis zelf is een enthousiast gebruiker van telepresence robots. Dat zijn robots die de bewegingen van een mens zelfs op grote afstand, bijvoorbeeld duizenden kilometers, overbrengen. Diamandis werkt bij vier bedrijven en organisaties: Singularity University (Mountain View, bij San Francisco), XPRIZE (Los Angeles), Human Longevity Inc. (San Diego, bij de Mexicaanse grens) en Planetary Resources (Seattle, tegen de Canadese grens). Deze liggen in het meest extreme geval (San Diego en Seattle) duizenden kilometers van elkaar. Hij kan nu zonder problemen alle vier bezoeken in een dag, door gebruik te maken van telepresence robots. Met als bijkomend voordeel dat de robot met zijn razendsnelle sensoren alle lichaamstaal van de gesprekspartner kan opnemen, en eerdere gesprekken kan terughalen. Dat geeft uiteraard enorme voordelen bij onderhandelingen, zowel qua tijdswinst als qua inschatten van de gesprekspartner.

Een andere optie is een virtuele wereld op te zetten. Virtuele werelden, zoals Second Life, zijn nu nog vrij houterig, maar met de krachtige computers in de toekomst zullen ervaringen in een virtuele wereld levensecht lijken. Zodra je dan je VR-bril opzet, ben je echt in een andere wereld, waar je mensen van over de hele wereld kan ontmoeten. Dit zonder dat je door de douane heen moet, met vernederende fouilleringen of een röntgencheck.

Kortom: reizen zal heel anders worden dan nu. Of we nu gaan reizen met hyperloop, via een jetpack, in een robotauto of alleen in de virtuele wereld, wat ooit science fiction was, zal nu voor een groot deel science fact worden.

Met een Dysonzwerm kan je een groot deel van de totale energie van een zon aftappen.

Holle aarde rond een witte dwerg mogelijk?

Een witte dwerg geeft heel fel licht, maar is maar heel klein, ongeveer zo groot als een aardachtige planeet, maar dan met de massa van een ster. Die kleine afmetingen maken een witte dwerg interessant voor een megalomaan project: een holle reuzenaarde bouwen. Zou dit kunnen?

Dysonschil

Met een Dysonzwerm kan je een groot deel van de totale energie van een zon aftappen.
Met een Dysonzwerm kan je een groot deel van de totale energie van een zon aftappen.

Een spectaculair idee om ons gebrek aan woonruimte in één klap op te lossen is het aanleggen van een zogeheten Dysonschil, een concept bedacht door de Britse fysicus Freeman Dyson. In het kort komt het er op neer om in plaats van het planetenstelsel dat we nu kennen, een holle bolvormige schil rond de zon aan te leggen. De bewoonbare oppervlakte zou hiermee extreem groot worden. Als de schil zich ter hoogte van de aarde zou bevinden, zou de bewoonbare oppervlakte meer dan 1,1 miljard maal die van de aarde zijn. Veel onderzoekers denken dat dit een logische stap is voor een Kardashev-II beschaving.

Zoals zich laat vermoeden is hier ook extreem veel materiaal voor nodig dat bovendien extreem sterk moet zijn om de enorme krachten op te vangen. Om even een idee te geven: als de hele aarde gebruikt zou worden om de Dysonschil mee aan te leggen, zou dit een laagje van ongeveer een millimeter dik opleveren. Reken daarbij nog het materiaal dat nodig is om een leefbare ecosfeer te scheppen. Dit is dus wat minder praktisch.

Maar wat als de Dysonschil veel kleiner zou zijn? Bij de zon is dat onhaalbaar: de zon zelf is al 1,4 miljoen kilometer in diameter. Echter: er zijn veel kleinere sterren die uitstekend geschikt zijn: witte dwergen.

Bewoonbare zone rond een witte dwerg

Kleine sterren van ongeveer een zonsmassa of minder storten op het eind van hun leven niet ineen tot een neutronenster of zwart gat, maar veranderen in een witte dwerg. Een witte dwerg bevat het grootste deel van de massa van de ster, maar dan samengeperst in een volume ter grootte van de aarde. Afhankelijk van hoe zwaar de voorgangerster van de witte dwerg was, bestaat de kern uit opeengepakt helium, een mengsel van koolstof en zuurstof of (zeer zeldzaam) een kern bestaande uit neon, zuurstof en magnesium. Dit laatste vereist dat de ster op tijd het grootste deel van zijn massa afstoot, zodat zich geen neutronenster vormt en is dus vrij zeldzaam.

De lichtste vorm heeft zich nog niet kunnen vormen – een rode dwerg blijft voor zeker honderd tot duizend miljard jaar in de hoofdreeks (hoewel er witte heliumdwergen bekend zijn waarvan een zware begeleider de buitenste gaslagen heeft gestript) . Dat is tientallen malen de ouderdom van het heelal. Vrijwel alle witte dwergen behoren dan ook tot de nuttigste categorie: witte dwergen met een koolstof-zuurstofkern.

Starlifting, het oogsten van een planetaire nevel en een echte ozonlaag

Witte dwergen van deze grootte hebben een bewoonbare zone op ongeveer een miljoen kilometer afstand. Dit maakt de benodigde hoeveelheid materiaal veel kleiner, omdat de oppervlakte ‘slechts’ zevenduizend maar die van de aarde is. Geen punt, want om deze sterren bevindt zich een enorme planetaire nevel, tientallen procenten van de totale massa van de ster, die je zou kunnen oogsten. Vooral de koolstof hierin is uiteraard interessant, want hier kan je extreem sterke materialen als koolstofnanovezels van construeren en ook waterstof en stikstof, wellicht zelfs een spoor silicium en metalen vandaan halen. Een grotere bron van koolstof en ook zuurstof is de witte dwerg zelf. Je zou door middel van starlifters in een baan om de dwerg de ijle zuurstof-koolstofdampen rond de ster kunnen afzuigen. De zuurstofrijke atmosfeer binnen de Dysonschil vormt een ozonlaag die het leven op de oppervlakte van de Dysonschil beschermt tegen de sterke UV-straling van de dwerg. Het is even doorpakken, maar dan heb je ook je super-holle aarde. Wel moet je bij het ontwerp rekening houden met de koeling.

Stabiele omloopbaan

De krachten die op deze Dysonschil komen te staan zijn, vergis je niet, echt immens groot. Een massieve schil,  waar Dyson aan dacht, is dus met de huidige technologie en met de vormen van materie die we nu kennen, niet mogelijk. Wel zou je kunnen denken aan een actieve schil, bestaande uit zwevende delen en een gasdicht membraan dat het gas opgesloten houdt of wellicht aan elektromagnetische opsluiting. De schil zal vermoedelijk ook de vorm van een torus of afgeplatte schijf kunnen krijgen. Door de schijf loodrecht op de rotatierichting te laten wentelen, zou je in principe het systeem stabiel moeten kunnen houden. Het hele systeem zou onzichtbaar zijn, maar warmtestraling van ongeveer een graad of twintig à dertig uitstralen. Er is dus een goede reden om objecten met ongeveer deze temperatuur, bruine dwergen, dit ding hier bijvoorbeeld, heel goed in de gaten te houden. Want wie weet zijn buitenaardse wezens ons al voor geweest…

Artist impression van een exoplaneet. Bron: iau.org

Video: kunnen we exoplaneten koloniseren?

Nu er steeds meer mogelijk bewoonbare planeten buiten het zonnestelsel worden ontdekt, vragen steeds meer mensen zich af of we in staat zullen zijn ooit op een exoplaneet te wonen.

Het grootste probleem, verreweg, is de enorme afstand tot zelfs de dichtstbijzijnde interessante exoplaneet. Deze zijn tienduizenden malen verder weg dan de planeten in ons eigen zonnestelsel. We zullen dus een manier moeten vinden om sneller te reizen dan het licht, of in winterslaap moeten gaan, om deze grote afstanden af te leggen.

Artist impression van een exoplaneet. Bron: iau.org
Bron IAU. https://www.iau.org/copyright/

Galactisch GPS systeem ontdekt

Overal in het bekende deel van de Melkweg kunnen ruimtevaarders in principe hun positie bepalen tot op vijf kilometer precies. Pulsars, de resten van uitgebrande sterren, blijken een onvermoede kwaliteit te hebben als gids.

Pulsars

Onderzoekers van het Max-Planck-Institut für extraterrestrische Physik in het Duitse Garching hebben een methode ontwikkeld om de positie in de ruimte zeer precies te bepalen, waarbij gebruik wordt gemaakt van röntgenstraling van pulsars.

Pulsars zoals dit restant van een supernova in de Krabnevel, zijn extreem nauwkeurig. Bron: NASA

Deze dichte overblijfselen van geëxplodeerde sterren draaien extreem snel, waardoor hun straling als relatief smalle bundel over het heelal wordt verspreid. Pulsars draaien zo stipt dat ze atoomklokken evenaren.

Vijf kilometer nauwkeurig

Kortom: uitstekend te gebruiken als interstellair GPS systeem, aldus het team. Als een ruimtevaartuig de middelen aan boord heeft om de pulsen te detecteren, kan deze hun aankomsttijd vergelijken met de tijd die voorspeld is op de referentielokatie. Dit zou het ruimtevaartuig in staat stellen overal in de Melkweg waar de pulsars bekend zijn, het grootste deel, de positie tot op vijf kilometer nauwkeurig te bepalen. Als we ooit iets als hyperdrive uitvinden, zou de positie na de sprong exact bekend zijn.

Een toekomstig interstellair ruimteschip (Stanford Torus model) op weg door het Melkwegstelsel. bron: Heineken11, Wikimedia Commons

Ter vergelijking: bereikten we relatief dezelfde nauwkeurigheid met het huidige GPS systeem, dan zouden we op aarde tot ongeveer een atoomdikte nauwkeurig kunnen navigeren. Wel moeten ingenieurs dan röntgentelescopen flink verkleinen, tot minder dan een honderdste van de tegenwoordige grootte.

Bemande missie naar Mars

Prof. Werner Becker van het Max-Planck-Institut  für extraterrestrische Physik is ervan overtuigd dat zijn navigatiesysteem erg handig is missies naar andere planeten en wellicht voor een bemande missie naar Mars. High-performance systemen zijn dan een absolute must, zeker als de mensheid zich op een dag op zal maken voor een reis naar een andere ster.

Bron:
Dead stars to guide spacecrafts, BBC, 2012
How interstellar beacons could help future spacecraft find their way across the universe, MPE News, 2012

lichtgevende snelweg

Nederlandse lichtgevende snelwegen krijgen veel bewondering

lichtgevende snelweg
De lichtgevende snelweg zoals ontworpen door Studio Rosengaarde en Heijmans. Bron/copyright: Studio Rosengaarde (fair use)

Nederland zal halverwege 2013 eigenaar worden van de eerste futuristische snelweg die de veiligheid bevordert en bovendien energie bespaart. De snelweg, bedacht door Studio Roosegaarde en Heijmans Infrastructure, werd rond Oss, in de provincie Noord-Brabant, getest.

Het bevat de volgende vernieuwende functies: glow-in-the-dark wegmarkeringen die zichzelf overdag bij zonlicht opladen en ’s nachts licht geven; verf op het wegdek dat reageert op de temperatuur en aangeeft wanneer de weg koud en glad is; en lichten langs de snelweg die alleen branden als auto’s passeren. Ook wordt er gekeken naar de mogelijkheid om auto’s al rijdende elektrisch op te laden op een daarvoor ingerichte rijstrook.

Vanuit het buitenland wordt er vol bewondering gekeken naar deze Nederlandse innovatie. Zie hieronder het filmpje voor meer uitleg.

Voor foto’s van het project, kijk hier. Voor het officiele persbericht, zie hier.

StarTram: tram naar de sterren

Met een nieuw, visionair plan willen enkele ruimtewetenschappers de ruimte definitef openleggen. De meest uitgebreide versie van Startram kan zelfs mensen voor de kosten van een rond-de-wereld ticket in low earth orbit brengen.

StarTram, een soort rail gun?

Het voorgestelde lanceersysteem Startram werkt niet met raketten of raketbrandstof, maar door elektromagnetische aandrijving. Elektromagneten versnellen een gemagnetiseerde drager op rails en lanceren de lading uiteindelijk in de stratosfeer. Er zijn al veel plannen ontwikkeld voor een magnetische accelerator, zowel in science fiction als op NASA-tekentafels, maar tot nu toe is geen het laboratoriumstadium voorbij gekomen.

StarTram
StarTram in actie. Bron: StarTram

Volgens de bedenkers van Startram heeft hun geesteskind wel kans van slagen. Startram maakt gebruik van nu al verkrijgbare technologie en is volgens de bedenkers commercieel haalbaar. Dus zou in principe gebouwd kunnen worden. Een van de ontwikkelaars is dr. James Powell, mede-uitvinder van supergeleidende maglev treinen. Mede-initiatiefnemer dr. George Maise, een ruimtevaartingenieur die hiervoor aan Brookhaven National Laboratories verbonden was, heeft voldoende ervaring om dit idee in praktijk te brengen.

Alleen vracht voor 20, of ook passagiers voor 60 miljard

De bedenkers hebben twee verschillende modellen voorgesteld: een versie die alleen vracht kan vervoeren (Generation 1). Dit model kost ongeveer 20 miljard dollar (plm. 16,3 miljard euro, zeg maar een klein bankreddinkje a la ABN Amro) en tien jaar om te bouwen. Deze versie kan tegen een hoge berg gebouwd.

De krachtiger passagiersversie, Generation 2, zou rond de 60 miljard dollar kosten (plm. 47 miljard euro, een achtste van wat er in Afghanistan doorheen is gedraaid om de Afghanen te “bevrijden” van zichzelf). Deze uitgebreidere versie kan in rond de 20 jaar voltooid worden. De Generation 2 is maar liefst 1609 km lang en reikt tot een hoogte van 20 km in de stratosfeer. De lancering werkt door miljoenen ampères stroom door zowel  supergeleidende kabels op de grond, als door een kabel boven de buis te sturen. Deze (in tegengestelde richtingen bewegende) stromen stoten elkaar vervolgens af, waardoor  de buis blijft zweven.

Door de enorme lengte kunnen passagiers na een geleidelijke versnelling een snelheid van 9 km/s bereiken zonder door dodelijke g-krachten tot moes te zijn gedrukt. Bij deze enorme snelheden is de luchtweerstand enorm. Vandaar dat de elektromagnetische versnelling plaats vindt in een luchtledige buis.

Enorme kostenbesparing

StarTram
Het werkingsprincipe van de zwevende buis. Twee enorm sterke elektrische stromen stoten elkaar af.

Beide uitvinders wijzen er op dat lanceren via een Startram-achtig systeem vele malen goedkoper is dan lanceren met een raket. Een kilogram lading in low earth orbit brengen kost nu rond de tienduizend dollar. Met de Startram zou dit slechts vijftig dollar kosten, waarvan slechts een procent energiekosten. Ruimtereizigers naar het internationale ruimtestation ISS kunnen hun ticketkosten drukken van 20 miljoen tot vijfduizend dollar.

Is StarTram een realistisch plan?

Onderzoekers van Sandia National Laboratories hebben het plan doorgerekend, op zoek naar fouten, maar hebben geen ernstige gebreken in de opzet kunnen vinden. De voornaamste technische uitdaging is opschalen van bestaande systemen. Voor zowel de tunnel als de ruimtevaartuigen is een supergeleidende niobium legering nodig, die wordt gekoeld tot 4 kelvin. Dit is zeer koud, deze temperatuur van 4 graden boven het absolute nulpunt komt alleen binnen bereik met het zeer schaarse helium.

Dit plan zou inderdaad de ruimte open kunnen leggen en plannen om asteroïden te ontginnen of andere planeten te koloniseren realistisch maken. Zwakke punten zijn m.i. de zeer sterke magnetische velden die op worden gewekt. Dit kan de vlucht van trekvogels, alsmede de vele andere wezens  die gevoelig zijn voor magnetisme, ontregelen. En ook de krankzinnig grote hoeveelheden helium die nodig zullen zijn.

Aan de andere kant, hiermee kunnen we wel dat helium gewoon uit de ruimte halen. Want planeten als Jupiter bestaan er voor een groot deel uit. Wat denken jullie?

Verder lezen

Bron: 

Website – StarTram

Draadloze energie nu echt binnen bereik

Worden elektriciens werkeloos, nu er een revolutionair systeem voor draadloze energie is uitgevonden? Onderzoekers van de Universiteit van Michigan en de Universiteit van Tokio hebben een systeem ontwikkeld om veilig elektriciteit via de ether te leveren.

Draadloze energie tot 50 watt

Dit systeem, wat de onderzoekers “room-scale magnetoquasistatic wireless power transfer” noemen, kan elektronica in een heel huis of ander gebouw van draadloze energie voorzien. Volgens een nieuw onderzoeksartikel, gepubliceerd in Nature Electronics, kunnen magnetische velden door middel van deze technologie 50 watt vermogen leveren. Een van de auteurs, hoogleraar informatica en techniek Alanson Sample, zegt dat de technologie niet alleen telefoons en laptops bevrijdt van de eeuwige snoeren.

Maar, en dat is heel belangrijk, ook geïmplanteerde medische apparaten van stroom kan voorzien. En, ook, op deze manier, nieuwe mogelijkheden biedt voor mobiele robotica in huizen en fabrieken. het grote probleem bij kleine draadloze apparaten is de energievoorziening. Iedere bezitter van een telefoon of ander draadloos apparaat weet daar alles van.

Draadloze energie, zowel op grote als op kleine schaal

Het team heeft het systeem ook uitgetest in ruimtes die kleiner zijn dan een complete kamer. Bijvoorbeeld een gereedschapskist voor computers en andere gadgets. Maar de grootste waarde heeft dit natuurlijk voor medische implantaten. Een pacemaker, bijvoorbeeld, of misschien een geïmplanteerde insulinepomp. Op dit moment krijgen hartimplantaten meestal hun stroom via een draad, waardoor er een gat nodig is voor de draad. Met alle risico’s voor infectie van dien.

Werkzaamheid in een kamer

De technologie werkt gedemonstreerd door het team van de universiteit van Tokio in de kamer van ongeveer 3 bij 3 meter.

Het maakt niet uit waar je je apparaten zijn, overal in deze kamer blijven ze werken. en waar de meubels en mensen zich in de kamer ook bevonden. Dat is anders dan bijvoorbeeld met de hier eerder beschreven technologie van Xiaomi, die werkt met behulp van richtbundels.

Het vermogen is ook veel groter. Apparaten die werkten over deze nieuwe technologie waren onder meer lampen, ventilatoren en mobiele telefoons.

draadloze energie
Elk apparaat in deze kamer werkt met draadloze energie, die op wordt gewerkt via de elektrische geleidende wanden. Bron Universiteit Michigan

Systeem zonder schadelijke microgolfstraling

Dit systeem is een grote verbetering ten opzichte van bestaande draadloze technologie. Daarbij wordt bijvoorbeeld mogelijk schadelijke microgolfstraling gebruikt of moeten apparaten op speciale oplaadpunten geplaatst. In plaats van deze technologie gebruikt dit systeem elektriciteit geleidende wanden in de kamer, die oscillerende magnetische velden opwekken. Dit magneetveld wekt stroom op in de ontvangende elektrische spoel in het apparaat in kwestie, waar het apparaat op werkt.

Draadloze energie van gereedschapskist tot grote productiehal

Het systeem kan gemakkelijk worden opgeschaald naar grotere toepassingen, zoals productiehallen en kantoren, stellen althans de onderzoekers. Je hoeft alleen een elektrisch geleidend oppervlak op de muur te spuiten of aluminiumfolie aan te brengen en je bent zogezegd in business. We kunnen dus stellen dat met deze technologie aluhoedjes het laatst lachen.

Maar hoe werkt het systeem?

Het geheim is een uitgekiende combinatie van spanning in een bepaalde frequentie, condensatoren en geleidende wanden. De onderzoekers slaagden er in twee driedimensionale magnetische velden op te wekken, door rekening te houden dat met de resonantie van de kamer. Bij deze kamer van 3 m groot is dat ongeveer 1.300.000 Hz. Het eerste veld cirkelt rond het centrum van de kamer, het tweede veld gaat van hoek tot hoek. Het gevolg is dat in ieder deel van de kamer ongeveer evenveel wisselende magnetische velden op worden gewekt, waardoor een apparaat op elke plek in de kamer werkt.

De efficiëntie van dit systeem is ongeveer 37,1%. Dat is natuurlijk slecht nieuws voor het milieu, maar in principe gebruiken kleine huishoudelijke apparaten veel minder energie dan grootgebruikers als de douche, de verwarming en vervoer.

Elektriciens hoeven zich dus niet erg zorgen te maken. Ook dit systeem vergt nog de nodige installatie. Aantrekkelijk aan dit systeem voor draadloze energie is wel dat het zowel in nieuwbouw als bestaande huizen toegepast kan worden.

:

Bronnen

  1. ‘Charging room’ system powers lights, phones, laptops without wires, University of Michigan News, 2021
  2. Takuya Sasatani, Alanson P. Sample, Yoshihiro Kawahara. Room-scale magnetoquasistatic wireless power transfer using a cavity-based multimode resonator. Nature Electronics, 2021; DOI: 10.1038/s41928-021-00636-3

Kerncentrales op zee kunnen snel gerealiseerd worden

Kernenergie is een klimaat vriendelijk alternatief voor kolencentrales. Kerncentrales op zee kunnen ook snel in gebruik worden genomen.

Kernenergie, betrouwbaar en compact

Vergelijken met zonne-energie en windenergie heeft kernenergie enkele grote voordelen. Het voornaamste voordeel van kernenergie is dat dit altijd beschikbaar is. Zomer en winter, dag en nacht. Zonnig weer of ijzige winterstorm. Dat is met zonne-energie en windenergie maar afwachten. Een ander groot voordeel van kernenergie is dat het maar weinig ruimte in beslag neemt. Vergelijk een windmolenpark of een zonneweide maar met een kerncentrale die een gelijk vermogen levert. Een ander voordeel is de geringe hoeveelheid afval. Zowel een zonneweide als vooral windmolens leveren enorm veel afval op, dat heel moeilijk is te hergebruiken. Ter vergelijking: alle afval van de kerncentrale in Borssele kan worden opgeslagen in een enkele grote schuur.

Afvalprobleem is te overzien

Kernenergie heeft twee grote nadelen. Ten eerste is dat het afvalprobleem, ten tweede het gevaar op een kernramp. Het afvalprobleem wordt in feite behoorlijk overschat. De hoeveelheid hoog radioactief afval die vrijkomt is maar klein. Om een indruk te geven, de kerncentrale in Borssele produceert per jaar ongeveer drie kubieke meter kernafval. Hiervoor in ruil levert de centrale 3,3 miljard kWh per jaar. Ter vergelijking: een kolencentrale produceert per kilowattuur 358 g kooldioxide. Als Borssele vervangen zal worden door een kolencentrale zou dat dus meer dan 1 miljard kg extra CO2 opleveren.

Omgekeerd, als in 2019 alle vijf steenkoolcentrales in Nederland vervangen zouden worden door kerncentrales, zou dat 17  miljard kWh * 358 g = rond 6 miljard kg uitstoot van kooldioxide hebben bespaard. Omgerekend is dat ruim 3% van de totale Nederlandse uitstoot. Als we trouwens ook het complete Nederlandse wagenpark van stroom zouden voorzien, in plaats van, zoals nu, van benzine en diesel, en ook de industrie, zou dit de Nederlandse CO2-uitstoot meer dan halveren. Dit, zomer en winter, 24 uur per dag. Als we een kerncentrale in het Westland zouden plaatsen, kan deze de tuinders van gratis warmte voorzien.

Risico’s van kerncentrales op zee zijn beperkt

De twee grote kernrampen, Tsjernobyl en Fukushima, deden zich voor bij verouderde, onveilige centrales. De oude reactor in Fukushima had al jaren eerder dicht gemoeten. Tot overmaat van ramp bouwde het corrupte Japanse bedrijf Tepco de centrale in Fukushima ook nog op een onveilige plaats, waar veel aardbevingen en tsunami’s voorkomen. Moderne reactoren zijn veel veiliger.

De voornaamste reden dat kernenergie niet massaal wordt uitgerold is emotioneel. Kernrampen als Tsjernobyl en Fukushima waren heel veel in de publiciteit. Toch zijn hierbij in verhouding heel weinig doden gevallen. In Tsjernobyl zijn als gevolg van straling hooguit enkele tientallen doden gevallen. In Fukushima welgeteld één. Ter vergelijking, er vallen per biljoen: kilowattuur door de mijnbouw en vervuiling rond de 100.000 doden als gevolg van het gebruik van steenkool [2]. Omdat deze doden verspreid over het jaar vallen, en wij het normaal vinden dat mensen met longkanker in het ziekenhuis liggen, maakt bijna niemand hier een punt van.

Kerncentrales op zee voorkomen rechtszaken van omwonenden

Vanwege deze emotionele bezwaren is het heel moeilijk om nieuwe kerncentrales te bouwen. Omwonenden spannen eindeloze rechtszaken aan, waardoor het tientallen jaren duurt voordat er eindelijk een kerncentrale kan worden gebouwd. Zoveel tijd hebben we niet.

Rosatom ontwikkelde deze kerncentrale op zee in zeven jaar. Rosatom kan deze centrales in enkele jaren leveren. De oplossing? Bron/copyright: rosatom.ru
Rosatom ontwikkelde deze kerncentrale op zee in zeven jaar. Rosatom kan deze centrales in enkele jaren leveren. De oplossing? Bron/copyright: rosatom.ru[1]/fair use

Drijvende kerncentrales op zee kunnen heel snel aanmeren

Zoals gezegd, zijn windmolenparken een ramp voor het milieu. Bijvoorbeeld, door de vogels die ze doden. De wieken van versleten windmolens zijn heel moeilijk te recyclen. Tot overmaat van ramp is de winning van de zeldzame aardmetalen, die nodig zijn voor de permanente magneten in windmolens, zeer milieuvervuilend. Daar hebben wij niet veel last van, maar de Chinezen die in de omgeving van deze mijnbouw leven, des te meer. Maar we kunnen toch plezier hebben van de dure infrastructuur die voor deze windmolenparken is aangelegd. Namelijk, door schepen met kerncentrales aan boord aan te meren en aan te koppelen in deze windmolenparken.

Zonne-energie een prima idee, maar dan op de daken van woonhuizen

Zonnepanelen zijn prima. Niet in zonneweides, maar op de daken van huizen van particulieren, natuurlijk. Deze kunnen prima de airconditioning van energie voorzien in de zomer. De populariteit van airconditioning stijgt snel. Door de klimaatverandering komen hoge temperaturen in de zomer immers steeds vaker voor. Zonnepanelen kunnen deze piek in de behoefte aan elektriciteit in de zomer prima opvangen.

Bronnen

  1. The floating NPP has delivered its first 10 mln kWh of electric power to the Chukotka grid, Rosatom.ru, 2020
  2. Mortality rate worldwide in 2012, by energy source (in deaths per thousand terawatt hour), Statista, 2012